Solar Photovoltaic Surface Cooling Using Hybrid Solar Chimney-Collector with Wavy Fins
DOI:
https://doi.org/10.37934/arnht.22.1.4658Keywords:
Passive cooling, Wavy fins, Solar chimney, PhotovoltaicAbstract
Elevated temperatures, frequently observed in regions characterized by high ambient heat, markedly diminish the operational efficiency and curtail the lifespan of Solar Photovoltaic (PV) panels. Consequently, it is essential to enhance the sustainability and operational performance of solar energy systems through the mitigation of surface temperatures of solar PV panels. The study investigates the impact of the number of fins on the panel's surface temperature and the airflow within the collector-chimney cavity. Computational Fluid Dynamics (CFD) simulations were employed to determine the optimal number of fins for maximum cooling efficiency. The results indicate that increasing the number of fins initially lowers the solar PV surface temperatures, but the improvements diminish due to increased airflow restrictions. The surface temperature reduction enabled by the fins up to 14.1°C at 50.99°C, which can help mitigate solar PV efficiency losses in hot climates. The CFD simulations accurately predicted the thermal-fluid behaviour and cooling capacity of the hybrid system, as validated against experimental data. The study concludes that the incorporation of optimized wavy cooling fins in a hybrid solar chimney-collector system shows strong potential for passively enhancing solar PV panel cooling and efficiency.
Downloads
References
Buonocore, Jonathan J., Hughes, Ethan J., Michanowicz, Drew R., Heo, Jinhyok, Allen, Joseph G., and Williams, Augusta. “Climate and health benefits of increasing renewable energy deployment in the United States.” Environmental Research Letters, no. 4 (2019): 1-13. https://doi.org/10.1088/1748-9326/ab49bc DOI: https://doi.org/10.1088/1748-9326/ab49bc
Güney, Taner. “Solar energy, governance and CO2 emissions.” Renewable Energy 184 (2022): 791-798. https://doi.org/10.1016/j.renene.2021.11.124 DOI: https://doi.org/10.1016/j.renene.2021.11.124
Abdul Karim, Nayab, Mehmood, Umer, Zahid, Hafiza Fizza, and Asif, Tahira. “Nanostructured photoanode and counter electrode materials for efficient Dye-Sensitized Solar Cells (DSSCs).” Solar Energy 185 (2019): 165-188. https://doi.org/10.1016/j.solener.2019.04.057 DOI: https://doi.org/10.1016/j.solener.2019.04.057
Dambhare, Mugdha V., Butey, Bhavana, and S. V. Moharil. “Solar photovoltaic technology: A review of different types of solar cells and its future trends.” Journal of Physics: Conference Series 1913 (2021): 1-16. https://doi:10.1088/1742-6596/1913/1/012053 DOI: https://doi.org/10.1088/1742-6596/1913/1/012053
Saleem, Adeel, Mehmood, Kashif, and Rashid, Faizan. “The Efficiency of Solar PV System.” Proceedings of 2nd International Multi-Disciplinary Conference (2019): 1-6.
Lupu, A. G., Homutescu, V. M., Balanescu, D. T., and Popescu, A. “A review of solar photovoltaic systems cooling technologies.” IOP Conference Series: Materials Science and Engineering 444 (2018): 1-24. https://doi:10.1088/1757-899X/444/8/082016 DOI: https://doi.org/10.1088/1757-899X/444/8/082016
Moharram, K. A., Abd-Elhady, M. S., Kandil, H. A., and El-Sherif, H. “Enhancing the performance of photovoltaic panels by water cooling.” Ain Shams Engineering Journal 4, no. 4 (2013): 869-877. https://doi.org/10.1016/j.asej.2013.03.005 DOI: https://doi.org/10.1016/j.asej.2013.03.005
Wu, S., and Xiong, C. “Passive cooling technology for photovoltaic panels for domestic houses.” International Journal of Low-Carbon Technologies 9 no. 2 (2014): 118-126. https://doi.org/10.1093/ijlct/ctu013 DOI: https://doi.org/10.1093/ijlct/ctu013
Ren, X., Li, J., Jiao, D., Gao, D., and Pei, G. “Temperature-dependent performance of amorphous silicon photovoltaic/thermal systems in the long term operation.” Applied Energy 275 (2020): 1-14. https://doi.org/10.1016/j.apenergy.2020.115156 DOI: https://doi.org/10.1016/j.apenergy.2020.115156
Zhao, B., Hu, J., Chen, W., Qiu, Z., Zhou, J., Qu, Y., and Ge, B. (2016, September 8). “Photothermal performance of an amorphous silicon photovoltaic panel integrated in a membrane structure.” Journal of Physics D: Applied Physics 49, no. 39 (2016). https://doi.org/10.1088/0022-3727/49/39/395601 DOI: https://doi.org/10.1088/0022-3727/49/39/395601
Dupré, Oliver, Vaillon, Radolphe, and Green, Martin. “Temperature Coefficients of Photovoltaic Devices.” Springer eBooks (2016): 29-74. https://doi.org/10.1007/978-3-319-49457-9_2 DOI: https://doi.org/10.1007/978-3-319-49457-9_2
Hou, Xin, Wen, Daoyuan, Li, Fangqin, Ma, Chuang, Zhang, Xiaotong, Feng, Haijun, and Ren, Jianxing. “Influence of light and its temperature on solar photovoltaic panels.” E3S Web of Conferences 118 (2019): 1-3. https://doi.org/10.1051/e3sconf/201911801047 DOI: https://doi.org/10.1051/e3sconf/201911801047
Verma, Shrey, Mohapatra, Subhashree, Chowdhury, Subhankar, and Dwivedi, Gaurav. “Cooling techniques of the PV module: A review.” Materials Today: Proceedings 38, no. 1 (2020): 253-258. https://doi.org/10.1016/j.matpr.2020.07.130 DOI: https://doi.org/10.1016/j.matpr.2020.07.130
Elias, M. A., Jais, R., Muda, N., and Hassan, N. “Advances of Solar PV System Output Improvement through Cooling Technologies in Malaysia.” IOP Conference Series: Materials Science and Engineering 884, no.1 (2020): 1-8. https://doi.org/10.1088/1757-899X/884/1/012076 DOI: https://doi.org/10.1088/1757-899X/884/1/012076
Sharaf, Mohamed, Yousef, Mohamed S., and Huzayyin, Ahmed S. “Review of cooling techniques used to enhance the efficiency of photovoltaic power systems.” Environmental Science and Pollution Research 29 (2022): 26131-26159. https://doi.org/10.1007/s11356-022-18719-9 DOI: https://doi.org/10.1007/s11356-022-18719-9
Taqwa, Ahmad, Dewi, Tresna, Kusumanto, RD., Sitompul, Carlos R., and Rusdianasari, R. “Automatic Cooling of a PV System to Overcome Overheated PV Surface in Palembang.” Journal of Physics: Conference Series 1500 (2020): 1-10. https://doi.org/10.1088/1742-6596/1500/1/012013 DOI: https://doi.org/10.1088/1742-6596/1500/1/012013
Dewi, Tresna, Taqwa, Ahmad, Sitompul, Carlos R., Kusumanto, RD., and Rusdianasari, R.“Active and Passive Cooling Comparison of PV Panels Applied in Tropical City: Case Study Palembang, South Sumatra.” IOP Conference Series: Earth and Environment Science 709 (2021): 1-9. https://doi.org/10.1088/1755-1315/709/1/012005 DOI: https://doi.org/10.1088/1755-1315/709/1/012005
Kim, Jaemin, and Nam, Yujin. “Study on the cooling effect of attached fins on pv using cfd simulation.” Energies 12, no. 4 (2019): 1-12. https://doi.org/10.3390/en12040758 DOI: https://doi.org/10.3390/en12040758
Grubišić-Čabo, Filip, Nižetić, Sandro, Čoko, Duje, Marinić Kragić, Ivo, and Papadopoulos, Agis. “Experimental investigation of the passive cooled free-standing photovoltaic panel with fixed aluminum fins on the backside surface.” Journal of Cleaner Production 176 (2018): 119-129. https://doi.org/10.1016/j.jclepro.2017.12.149 DOI: https://doi.org/10.1016/j.jclepro.2017.12.149
Ibrahim, Mohd Farith, Misaran, Mohd Suffian, and Amaludin, Nazrein Adrian. “Simulation of solar pv surface temperature with dimpled fin cooling.” IOP Conference Series: Materials Science and Engineering 1217 (2022): 1-6. https://doi.org/10.1088/1757-899X/1217/1/012015 DOI: https://doi.org/10.1088/1757-899X/1217/1/012015
Agyekum, Ephraim Bonah, Praveenkumar, Seepana, Alwan, Naseer T., Velkin, Vladimir Ivanovich, and Shcheklein, Sergey E. “Effect of dual surface cooling of solar photovoltaic panel on the efficiency of the module: experimental investigation.” Heliyon 7 (2021): 1-9. https://doi.org/10.1016/j.heliyon.2021.e07920 DOI: https://doi.org/10.1016/j.heliyon.2021.e07920
Jawad, Ahmed, Misaran, Mohd Suffian, Rahman, Md. Mizanur, and Ismail, Mohd Azlan. “Experimental investigation on the effect of divergent tower solar chimney on the theoretical power potential.” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 81, no. 1 (2021): 140-149. https://doi.org/10.37934/arfmts.81.1.140149 DOI: https://doi.org/10.37934/arfmts.81.1.140149
Tasnim, Rumana, Us Saleheen, Rezwan, Rahman, Mr. Mizanur, and Mahbub, Farhan. “Introduction to solar chimney and its applications.” Cold Inflow-Free Solar Chimney (2021): 39-52. https://doi.org/10.1007/978-981-33-6831-6_3 DOI: https://doi.org/10.1007/978-981-33-6831-6_3
Jawad, Ahmed, Rahman, Md. Mizanur, and Misaran, Mohd Suffian. “Study the effects of physical parameters on performance in the divergent solar chimney.” Journal of Mechanical Engineering Research and Developments 42, no.4 (2019): 249-253. http://doi.org/10.26480/jmerd.04.2019.249.253 DOI: https://doi.org/10.26480/jmerd.04.2019.249.253
Kalkan, Naci, and Dagtekin, Ihsan. “Passive cooling technology by using solar chimney for mild or warm climates.” Thermal Science 20, no. 6 (2016): 2125-2136. https://doi.org/10.2298/TSCI150608168K DOI: https://doi.org/10.2298/TSCI150608168K
Ahmed, Omer Khalil, Algburi, Sameer, Ali, Zaid H., Ahmed, Amer K., and Shubat, Hawazen N. “Hybrid solar chimneys: a comprehensive review.” Energy Reports 8 (2022): 438-460. https://doi.org/10.1016/j.egyr.2021.12.007 DOI: https://doi.org/10.1016/j.egyr.2021.12.007
Jafari, Sajedeh, and Kalantar, Vali. “Numerical simulation of natural ventilation with passive cooling by diagonal solar chimneys and windcatcher and water spray system in a hot and dry climate.” Energy and Buildings 256, no. 1 (2022): 1-16. https://doi.org/10.1016/j.enbuild.2021.111714 DOI: https://doi.org/10.1016/j.enbuild.2021.111714
Hasan, Afnan A., Ahmed, Omer Khalil, and Fadhil, Ehsan. “Experimental Study of Performance of Solar Chimney.” IOP Conference Series: Materials Science and Engineering 1094 (2021): 1-11. https://doi.org/10.1088/1757-899X/1094/1/012046 DOI: https://doi.org/10.1088/1757-899X/1094/1/012046
Alkasrawi, Malek, Abdelsalam, Emad, Alnawafah, Hamza, Almomani, Fares, Tawalbeh, Muhammad, and Mousa, Aya. “Integration of solar chimney power plant with photovoltaic for co-cooling, power production, and water desalination.” Processes 9 (2021): 1-17. https://doi.org/10.3390/pr9122155 DOI: https://doi.org/10.3390/pr9122155
Chandavar, Arunachala Umesh. “Quantifying the performance advantage of using passive solar air heater with chimney for photovoltaic module cooling.” International Journal of Energy Research 45 (2020): 1576-1586. https://doi.org/10.1002/er.5782 DOI: https://doi.org/10.1002/er.5782
Hafiz. 2022. “Effect of Wire Mesh on Solar Chimney Performance in a Solar PV Cooling Setup” Undergraduate Thesis, Universiti Malaysia Sabah, Malaysia.
Popovici, Catalin-George, Hudișteanu, Sebastian Valeriu, Mateescu, Theodor Dorin, and Cherecheş, Nelu-Cristian. “Efficiency Improvement of Photovoltaic Panels by Using Air Cooled Heat Sinks.” Energy Procedia 85 (2016): 425-432. https://doi.org/10.1016/j.egypro.2015.12.223 DOI: https://doi.org/10.1016/j.egypro.2015.12.223
Teo, H. G., Lee, P. S., and Hawlader, M N A. “An active cooling system for photovoltaic modules.” Applied Energy 90, no. 1 (2012): 309-315. https://doi.org/10.1016/j.apenergy.2011.01.017 DOI: https://doi.org/10.1016/j.apenergy.2011.01.017