Forced Convection Flow of Nanofluid Within a Partially Filled Porous Straight Channel
DOI:
https://doi.org/10.37934/arnht.27.1.6684Keywords:
Heat transfer, Finite element method, Nusselt number, Darcy numberAbstract
The present study examines the impact of nanoparticle flow and migration on heat transfer within a linear channel containing a partially porous medium. The comprehensive exploration of forced convective heat transfer of nanofluids in a porous channel is not yet fully addressed in existing literature, presenting a significant open research area requiring further investigation. The porous channel is modeled using the Finite Element Method (FEM) for a steady flow, assuming thermal equilibrium between the solid phases and the nanofluid. A non-uniform distribution of nanoparticles within the channel is assumed, leading to the interdependence between the volume fraction distribution equation and the governing equations. A thorough analysis has been conducted on the impact of various parameters, including the Darcy number and Reynolds number. The findings indicate a direct relationship between the Reynolds number and the Nusselt number, with increases in the Reynolds number resulting in higher Nusselt numbers. Additionally, an increase in the Darcy number leads to an increase in the Nusselt number.
Downloads
References
Armaghani, T., M. J. Maghrebi, Ali J. Chamkha, and M. Nazari. "Effects of particle migration on nanofluid forced convection heat transfer in a local thermal non-equilibrium porous channel." Journal of Nanofluids 3, no. 1 (2014): 51-59. https://doi.org/10.1166/jon.2014.1073 DOI: https://doi.org/10.1166/jon.2014.1073
Nazari, M., M. H. Kayhani, and R. Mohebbi. "Heat transfer enhancement in a channel partially filled with a porous block: lattice Boltzmann method." International Journal of Modern Physics C 24, no. 09 (2013): 1350060. https://doi.org/10.1142/S0129183113500605 DOI: https://doi.org/10.1142/S0129183113500605
Nazari, M., R. Mohebbi, and M. H. Kayhani. "Power-law fluid flow and heat transfer in a channel with a built-in porous square cylinder: Lattice Boltzmann simulation." Journal of non-Newtonian fluid mechanics 204 (2014): 38-49. https://doi.org/10.1016/j.jnnfm.2013.12.002 DOI: https://doi.org/10.1016/j.jnnfm.2013.12.002
Mohebbi, Rasul, and Hanif Heidari. "Lattice Boltzmann simulation of fluid flow and heat transfer in a parallel-plate channel with transverse rectangular cavities." International Journal of Modern Physics C 28, no. 03 (2017): 1750042. https://doi.org/10.1142/S0129183117500425 DOI: https://doi.org/10.1142/S0129183117500425
Mohebbi, Rasul, Hassan Lakzayi, Nor Azwadi Che Sidik, and Wan Mohd Arif Aziz Japar. "Lattice Boltzmann method-based study of the heat transfer augmentation associated with Cu/water nanofluid in a channel with surface mounted blocks." International Journal of Heat and Mass Transfer 117 (2018): 425-435. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.043 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.043
Younes, Hammad, Mingyang Mao, SM Sohel Murshed, Ding Lou, Haiping Hong, and G. P. Peterson. "Nanofluids: Key parameters to enhance thermal conductivity and its applications." Applied Thermal Engineering 207 (2022): 118202. https://doi.org/10.1016/j.applthermaleng.2022.118202 DOI: https://doi.org/10.1016/j.applthermaleng.2022.118202
Samylingam, Lingenthiran, Navid Aslfattahi, Chee Kuang Kok, Kumaran Kadirgama, Norazlianie Sazali, Michal Schmirler, Devarajan Ramasamy, Wan Sharuzi Wan Harun, Mahendran Samykano, and A. S. Veerendra. "Green Engineering with Nanofluids: Elevating Energy Efficiency and Sustainability." Journal of Advanced Research in Micro and Nano Engineering 16, no. 1 (2024): 19-34. https://doi.org/10.37934/armne.16.1.1934 DOI: https://doi.org/10.37934/armne.16.1.1934
Mahamude, Abu Shadate Faisal, Wan Sharuzi Wan Harun, Kumaran Kadirgama, Kaniz Farhana, D. Ramasamy, L. Samylingam, and Navid Aslfattahi. "Thermal performance of nanomaterial in solar collector: State-of-play for graphene." Journal of Energy Storage 42 (2021): 103022. https://doi.org/10.1016/j.est.2021.103022 DOI: https://doi.org/10.1016/j.est.2021.103022
Kadirgama, K., L. Samylingam, Navid Aslfattahi, M. Samykano, D. Ramasamy, and R. Saidur. "Experimental investigation on the optical and stability of aqueous ethylene glycol/mxene as a promising nanofluid for solar energy harvesting." In IOP Conference Series: Materials Science and Engineering, vol. 1062, no. 1, p. 012022. IOP Publishing, 2021. DOI: https://doi.org/10.1088/1757-899X/1062/1/012022
Mohebbi, Rasul, M. M. Rashidi, Mohsen Izadi, Nor Azwadi Che Sidik, and Hong Wei Xian. "Forced convection of nanofluids in an extended surfaces channel using lattice Boltzmann method." International Journal of Heat and Mass Transfer 117 (2018): 1291-1303. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.063 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.063
Ahmed, F., Achiya Khanam, L. Samylingam, Navid Aslfattahi, and R. Saidur. "Assessment of thermo-hydraulic performance of MXene-based nanofluid as coolant in a dimpled channel: a numerical approach." Journal of Thermal Analysis and Calorimetry 147, no. 22 (2022): 12669-12692. https://doi.org/10.1007/s10973-022-11376-7 DOI: https://doi.org/10.1007/s10973-022-11376-7
Ramachandran, Kaaliarasan, Devarajan Ramasamy, Mahendran Samykano, Lingenthiran Samylingam, Faris Tarlochan, and Gholamhassan Najafi. "Evaluation of specific heat capacity and density for cellulose nanocrystal-based nanofluid." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 51, no. 2 (2018): 169-186.
Bhowmick, Debayan, Pitambar R. Randive, and Sukumar Pati. "Implication of corrugation profile on thermo-hydraulic characteristics of Cu-water nanofluid flow through partially filled porous channel." International communications in heat and mass transfer 125 (2021): 105329. https://doi.org/10.1016/j.icheatmasstransfer.2021.105329 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2021.105329
Chamkha, Ali. "Effect of Heating Wall Position on Forced Convection Along Two-Sided Open Enclosure with Porous Medium Utilizing Nanofluid." (2013).
Gholamalizadeh, Ehsan, Farzad Pahlevanzadeh, Kamal Ghani, Arash Karimipour, Truong Khang Nguyen, and Mohammad Reza Safaei. "Simulation of water/FMWCNT nanofluid forced convection in a microchannel filled with porous material under slip velocity and temperature jump boundary conditions." International Journal of Numerical Methods for Heat & Fluid Flow 30, no. 5 (2020): 2329-2349. https://doi.org/10.1108/HFF-01-2019-0030 DOI: https://doi.org/10.1108/HFF-01-2019-0030
Aminian, Ehsan, Hesam Moghadasi, and Hamid Saffari. "Magnetic field effects on forced convection flow of a hybrid nanofluid in a cylinder filled with porous media: A numerical study." Journal of Thermal Analysis and Calorimetry 141 (2020): 2019-2031. https://doi.org/10.1007/s10973-020-09257-y DOI: https://doi.org/10.1007/s10973-020-09257-y
Heidary, H., and M. J. Kermani. "Effect of nano-particles on forced convection in sinusoidal-wall channel." International Communications in Heat and Mass Transfer 37, no. 10 (2010): 1520-1527. https://doi.org/10.1016/j.icheatmasstransfer.2010.08.018 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2010.08.018
Samylingam, I., K. Kadirgama, Navid Aslfattahi, L. Samylingam, D. Ramasamy, W. S. W. Harun, M. Samykano, and R. Saidur. "Review on thermal energy storage and eutectic nitrate salt melting point." In IOP Conference Series: Materials Science and Engineering, vol. 1078, no. 1, p. 012034. IOP Publishing, 2021. DOI: https://doi.org/10.1088/1757-899X/1078/1/012034
Ashorynejad, Hamid Reza, and Ahad Zarghami. "Magnetohydrodynamics flow and heat transfer of Cu-water nanofluid through a partially porous wavy channel." International Journal of Heat and Mass Transfer 119 (2018): 247-258. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.117 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.117
Hussein, A. M., Lingenthiran, K. Kadirgamma, M. M. Noor, and L. K. Aik. "Palm oil based nanofluids for enhancing heat transfer and rheological properties." Heat and Mass Transfer 54 (2018): 3163-3169. https://doi.org/10.1007/s00231-018-2364-9 DOI: https://doi.org/10.1007/s00231-018-2364-9
Samylingam, I., Navid Aslfattahi, K. Kadirgama, Mahendran Samykano, L. Samylingam, and R. Saidur. "Improved thermophysical properties of developed ternary nitrate-based phase change material incorporated with MXene as novel nanocomposites." Energy Eng 118, no. 5 (2021): 1253-1265. DOI: https://doi.org/10.32604/EE.2021.016087
Samylingam, Lingenthiran, Kumaran Kadirgama, Navid Aslfattahi, M. Samykano, and R. Saidur. "Comparison of physical properties enhancement in various heat transfer nanofluids by MXene." In Advances in Nanofluid Heat Transfer, pp. 131-150. Elsevier, 2022. https://doi.org/10.1016/B978-0-323-88656-7.00007-6 DOI: https://doi.org/10.1016/B978-0-323-88656-7.00007-6
Ramasekhar, Gunisetty, A. Divya, Shaik Jakeer, S. R. R. Reddy, Ebrahem A. Algehyne, Muhammad Jawad, Ali Akgül, and Murad Khan Hassani. "Heat transfer innovation of engine oil conveying SWCNTs-MWCNTs-TiO2 nanoparticles embedded in a porous stretching cylinder." Scientific Reports 14, no. 1 (2024): 16448. https://doi.org/10.1038/s41598-024-65740-8 DOI: https://doi.org/10.1038/s41598-024-65740-8
Ramasekhar, Gunisetty, and Muhammad Jawad. "Characteristics of MWCNT, SWCNT, Cu and water based on magnetized flow of nanofluid with Soret and Dufour effects induced by moving wedge: Consequence of Falkner–Skan power law." Numerical Heat Transfer, Part A: Applications (2024): 1-15. https://doi.org/10.1080/10407782.2024.2341270 DOI: https://doi.org/10.1080/10407782.2024.2341270
Majeed, Aaqib, Ahmad Zeeshan, Muhammad Jawad, and Mohammed Sh Alhodaly. "Influence of melting heat transfer and chemical reaction on the flow of non-Newtonian nanofluid with Brownian motion: Advancement in mechanical engineering." Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 238, no. 1 (2024): 396-404. https://doi.org/10.1177/09544089221145527 DOI: https://doi.org/10.1177/09544089221145527
Jawad, Muhammad, Hassan Ali Ghazwani, Mohamed R. Ali, A. S. Hendy, Afraz Hussain Majeed, and Xinhua Wang. "Numerical simulation for thermal radiative flow of tangent hyperbolic nanofluid due to Riga plate in the presence of joule heating." Case Studies in Thermal Engineering 52 (2023): 103686. https://doi.org/10.1016/j.csite.2023.103686 DOI: https://doi.org/10.1016/j.csite.2023.103686
Algehyne, Ebrahem A., Muhammad Jawad, Mudassir Mureed, Huma Gull, and Sarwat Saeed. "Computational exploration of gyrotactic microbes and variable viscosity effects on flow of chemically reactive nanofluid." BioNanoScience (2024): 1-10. https://doi.org/10.1007/s12668-024-01520-y DOI: https://doi.org/10.1007/s12668-024-01520-y
Waseem, Muhammad, Muhammad Jawad, Sidra Naeem, and Aaqib Majeed. "Impact of Motile Microorganisms and Chemical Reaction on Viscoelastic Flow of Non-Newtonian Fluid with Thermal Radiation Subjected to Exponentially Stretching Sheet Amalgamated in Darcy-Forchheimer Porous Medium." BioNanoScience (2024): 1-12. https://doi.org/10.1007/s12668-024-01435-8 DOI: https://doi.org/10.1007/s12668-024-01435-8
Waseem, Muhammad, Sidra Naeem, Muhammad Jawad, Roobaea Alroobaea, Mohamed R. Ali, Aboulbaba Eladeb, Lioua Kolsi, and A. S. Hendy. "Thermal analysis of 3D viscoelastic micropolar nanofluid with cattaneo-christov heat via exponentially stretchable sheet: Darcy-forchheimer flow exploration." Case Studies in Thermal Engineering 56 (2024): 104206. https://doi.org/10.1016/j.csite.2024.104206 DOI: https://doi.org/10.1016/j.csite.2024.104206
Jawad, M., F. Mebarek-Oudina, H. Vaidya, and P. Prashar. "Influence of bioconvection and thermal radiation on MHD Williamson nano Casson fluid flow with the swimming of gyrotactic microorganisms due to porous stretching sheet." Journal of Nanofluids 11, no. 4 (2022): 500-509. https://doi.org/10.1166/jon.2022.1863 DOI: https://doi.org/10.1166/jon.2022.1863
Jawad, Muhammad, Hamiden Abd El-Wahed Khalifa, Abeer A. Shaaban, Ali Akgül, Muhammad Bilal Riaz, and Naeem Sadiq. "Characteristics of heat transportation in MHD flow of chemical reactive micropolar nanofluid with moving slip conditions across stagnation points." Results in Engineering 21 (2024): 101954. https://doi.org/10.1016/j.rineng.2024.101954 DOI: https://doi.org/10.1016/j.rineng.2024.101954
Samylingam, Lingenthiran, Navid Aslfattahi, Kumaran Kadirgama, Devarajan Ramasamy, Norazlianie Sazali, Wan Sharuzi Wan Harun, Chee Kuang Kok, Nor Atiqah Zolpakar, and Mohd Fairusham Ghazali. "Microscale Thermal Management: A Review of Nanofluid Applications in Microfluidic Channels." Engineering, Technology & Applied Science Research 14, no. 4 (2024): 15575-15580. https://doi.org/10.48084/etasr.7547 DOI: https://doi.org/10.48084/etasr.7547
Hisham, Sakinah, K. Kadirgama, Jasem Ghanem Alotaibi, Ayedh Eid Alajmi, D. Ramasamy, Norazlianie Sazali, Mohd Kamal Kamarulzaman et al. "Enhancing stability and tribological applications using hybrid nanocellulose-copper (II) oxide (CNC-CuO) nanolubricant: An approach towards environmental sustainability." Tribology International 194 (2024): 109506. https://doi.org/10.1016/j.triboint.2024.109506 DOI: https://doi.org/10.1016/j.triboint.2024.109506
Javaherdeh, Koroush, and Hamid Reza Ashorynejad. "Magnetic field effects on force convection flow of a nanofluid in a channel partially filled with porous media using Lattice Boltzmann Method." Advanced Powder Technology 25, no. 2 (2014): 666-675. https://doi.org/10.1016/j.apt.2013.10.012
Javaherdeh, Koroush, and Hamid Reza Ashorynejad. "Magnetic field effects on force convection flow of a nanofluid in a channel partially filled with porous media using Lattice Boltzmann Method." Advanced Powder Technology 25, no. 2 (2014): 666-675. https://doi.org/10.1016/j.ijthermalsci.2018.04.030 DOI: https://doi.org/10.1016/j.apt.2013.10.012
Kalteh, Mohammad, Abbas Abbassi, Majid Saffar-Avval, Arjan Frijns, Anton Darhuber, and Jens Harting. "Experimental and numerical investigation of nanofluid forced convection inside a wide microchannel heat sink." Applied Thermal Engineering 36 (2012): 260-268. https://doi.org/10.1016/j.applthermaleng.2011.10.023 DOI: https://doi.org/10.1016/j.applthermaleng.2011.10.023
Bejan, Adrian. Convection heat transfer. John wiley & sons, 2013. DOI: https://doi.org/10.1002/9781118671627
Kadirgama, K., M. M. Noor, M. M. Rahman, M. R. M. Rejab, C. H. C. Haron, and Khaled A. Abou-El-Hossein. "Surface roughness prediction model of 6061-T6 aluminium alloy machining using statistical method." (2009).
Kumar, Reji, M. Samykano, A. K. Pandey, K. Kadirgama, and V. V. Tyagi. "A comparative study on thermophysical properties of functionalized and non-functionalized Multi-Walled Carbon Nano Tubes (MWCNTs) enhanced salt hydrate phase change material." Solar Energy Materials and Solar Cells 240 (2022): 111697. https://doi.org/10.1016/j.solmat.2022.111697 DOI: https://doi.org/10.1016/j.solmat.2022.111697
Kumar, Raj, Rahul Nadda, Sushil Kumar, Shaik Saboor, C. Ahamed Saleel, Mohamed Abbas, Asif Afzal, and Emanoil Linul. "Convective heat transfer enhancement using impingement jets in channels and tubes: a comprehensive review." Alexandria Engineering Journal 70 (2023): 349-376. https://doi.org/10.1016/j.aej.2023.02.013 DOI: https://doi.org/10.1016/j.aej.2023.02.013
Sandhya, Madderla, D. Ramasamy, K. Sudhakar, K. Kadirgama, M. Samykano, W. S. W. Harun, G. Najafi, M. Mofijur, and Mohamed Mazlan. "A systematic review on graphene-based nanofluids application in renewable energy systems: Preparation, characterization, and thermophysical properties." Sustainable Energy Technologies and Assessments 44 (2021): 101058. https://doi.org/10.1016/j.seta.2021.101058 DOI: https://doi.org/10.1016/j.seta.2021.101058
Samykano, Mahendran, J. Kananathan, K. Kadirgama, A. K. Amirruddin, D. Ramasamy, and L. Samylingam. "Characterisation, Performance and Optimisation of Nanocellulose Metalworking Fluid (MWF) for Green Machining Process." International Journal of Automotive and Mechanical Engineering 18, no. 4 (2021): 9188-9207. https://doi.org/10.15282/ijame.18.4.2021.04.0707 DOI: https://doi.org/10.15282/ijame.18.4.2021.04.0707
Anamalai, K., L. Samylingam, K. Kadirgama, M. Samykano, G. Najafi, D. Ramasamy, and M. M. Rahman. "Multi-objective optimization on the machining parameters for bio-inspired nanocoolant." Journal of Thermal Analysis and Calorimetry 135 (2019): 1533-1544. https://doi.org/10.1007/s10973-018-7693-x DOI: https://doi.org/10.1007/s10973-018-7693-x
Kadirgama, Kumaran, M. M. Noor, and M. M. Rahman. "Optimization of surface roughness in end milling using potential support vector machine." Arabian Journal for Science and Engineering 37 (2012): 2269-2275. https://doi.org/10.1007/s13369-012-0314-2 DOI: https://doi.org/10.1007/s13369-012-0314-2
Ho, M. L. G., C. S. Oon, L-L. Tan, Y. Wang, and Y. M. Hung. "A review on nanofluids coupled with extended surfaces for heat transfer enhancement." Results in Engineering 17 (2023): 100957. https://doi.org/10.1016/j.rineng.2023.100957 DOI: https://doi.org/10.1016/j.rineng.2023.100957
Ali, Bilal, Sidra Jubair, Laila A. Al-Essa, Zafar Mahmood, Afrah Al-Bossly, and Faud S. Alduais. "Boundary layer and heat transfer analysis of mixed convective nanofluid flow capturing the aspects of nanoparticles over a needle." Materials Today Communications 35 (2023): 106253. https://doi.org/10.1016/j.mtcomm.2023.106253 DOI: https://doi.org/10.1016/j.mtcomm.2023.106253
Wu, Yangyang, Jiancheng Rong, Di Wang, Xuefeng Zhao, Lan Meng, Müslüm Arıcı, Changyu Liu, Ruitong Yang, and Dong Li. "Synergistic enhancement of heat transfer and thermal storage characteristics of shell and tube heat exchanger with hybrid nanoparticles for solar energy utilization." Journal of Cleaner Production 387 (2023): 135882. https://doi.org/10.1016/j.jclepro.2023.135882 DOI: https://doi.org/10.1016/j.jclepro.2023.135882
Samylingam, Lingenthiran, Navid Aslfattahi, Chee Kuang Kok, Kumaran Kadirgama, Norazlianie Sazali, Kia Wai Liew, Michal Schmirler et al. "Enhancing Lubrication Efficiency and Wear Resistance in Mechanical Systems through the Application of Nanofluids: A Comprehensive Review." Journal of Advanced Research in Micro and Nano Engineering 16, no. 1 (2024): 1-18. https://doi.org/10.37934/armne.16.1.118 DOI: https://doi.org/10.37934/armne.16.1.118
Awais, Muhammad, Najeeb Ullah, Javaid Ahmad, Faizan Sikandar, Mohammad Monjurul Ehsan, Sayedus Salehin, and Arafat A. Bhuiyan. "Heat transfer and pressure drop performance of Nanofluid: A state-of-the-art review." International Journal of Thermofluids 9 (2021): 100065. https://doi.org/10.1016/j.ijft.2021.100065 DOI: https://doi.org/10.1016/j.ijft.2021.100065
Abbas, Kamil, Wang Xinhua, Ghulam Rasool, Tao Sun, and Izzat Razzaq. "Thermal optimization of buoyancy driven radiative engine-oil based viscous hybrid nanofluid flow observing the micro-rotations in an inclined permeable enclosure." Case Studies in Thermal Engineering 60 (2024): 104774. https://doi.org/10.1016/j.csite.2024.104774 DOI: https://doi.org/10.1016/j.csite.2024.104774
Ali, Naim Ben, Zafar Mahmood, Mutasem Z. Bani-Fwaz, Sami Ullah Khan, and Iskander Tlili. "Thermal efficiency of radiated nanofluid through convective geometry subject to heating source." Ain Shams Engineering Journal 15, no. 10 (2024): 102947. https://doi.org/10.1016/j.asej.2024.102947 DOI: https://doi.org/10.1016/j.asej.2024.102947
Ratul, Raditun E., Farid Ahmed, Syed Alam, Md Rezwanul Karim, and Arafat A. Bhuiyan. "Numerical study of turbulent flow and heat transfer in a novel design of serpentine channel coupled with D-shaped jaggedness using hybrid nanofluid." Alexandria Engineering Journal 68 (2023): 647-663. https://doi.org/10.1016/j.aej.2023.01.061 DOI: https://doi.org/10.1016/j.aej.2023.01.061
Khorasani, Seyed Morteza Habibi, Mitul Luhar, and Shervin Bagheri. "Turbulent flows over porous lattices: alteration of near-wall turbulence and pore-flow amplitude modulation." Journal of Fluid Mechanics 984 (2024): A63. DOI: https://doi.org/10.1017/jfm.2024.198
Nemati, H., V. Souriaee, M. Habibi, and Kambiz Vafai. "Design and Taguchi-based optimization of the latent heat thermal storage in the form of structured porous-coated pipe." Energy 263 (2023): 125947. https://doi.org/10.1016/j.energy.2022.125947 DOI: https://doi.org/10.1016/j.energy.2022.125947
Samylingam, L., Navid Aslfattahi, R. Saidur, Syed Mohd Yahya, Asif Afzal, A. Arifutzzaman, K. H. Tan, and K. Kadirgama. "Thermal and energy performance improvement of hybrid PV/T system by using olein palm oil with MXene as a new class of heat transfer fluid." Solar Energy Materials and Solar Cells 218 (2020): 110754. https://doi.org/10.1016/j.solmat.2020.110754 DOI: https://doi.org/10.1016/j.solmat.2020.110754
Tan, KimHan, Lingenthiran Samylingam, Navid Aslfattahi, Mohd Rafie Johan, and Rahman Saidur. "Investigation of improved optical and conductivity properties of poly (methyl methacrylate)–MXenes (PMMA–MXenes) nanocomposite thin films for optoelectronic applications." Open Chemistry 20, no. 1 (2022): 1416-1431. https://doi.org/10.1515/chem-2022-0221 DOI: https://doi.org/10.1515/chem-2022-0221
Samylingam, Ilancheliyan, Kumaran Kadirgama, Lingenthiran Samylingam, Navid Aslfattahi, Devarajan Ramasamy, Norazlianie Sazali, Wan Sharuzi Wan Harun, and Chee Kuang Kok. "Review of Ti3C2Tx MXene Nanofluids: Synthesis, Characterization, and Applications." Engineering, Technology & Applied Science Research 14, no. 3 (2024): 14708-14712. https://doi.org/10.48084/etasr.7504 DOI: https://doi.org/10.48084/etasr.7504