Influence of MHD Flow on Shrinking Sheet with Partial Slip and Heat Generation at Stagnation Point
DOI:
https://doi.org/10.37934/arnht.28.1.4354Keywords:
Boundary Layer, Dual solution, Heat Transfer, Stability Analysis, SuctionAbstract
Fluid dynamics encompasses the fundamental principles of continuity, momentum, and energy conservation, which are applied through mathematical models like the Navier-Stokes equations. These equations are essential for describing how fluid properties like velocity, pressure, and density change in response to forces and environmental conditions. Thus, this study attempted to explore the characteristics of flow and heat transfer of a shrinking sheet in magnetohydrodynamics (MHD), along with the effect of partial slip and heat generation on the system. We employ a similarity transformation technique for turning the governing partial differential equations into ordinary differential equations. These equations are solved numerically through shooting method in Maple, and the results are compared to the previous research. The analysis shows that the suction parameter and velocity slip parameter have an increasing effect on both the skin friction rate and the heat transfer rate. In the meantime, the heat transfer rate decreases as the parameter increases for the heat generation, magnetic parameter, Eckert number and thermal slip parameter. The bvp4c solver in MATLAB is implemented to conduct a stability analysis and determine the physically feasible solution. According to our research, the stability of the solution occurs only in the first solution.
Downloads
References
Basha, Thameem Hayath, Sivaraj Ramachandran, and Bongsoo Jang. "Keller box computation for entropy generation analysis in the coating flow of magneto viscoelastic polymer nanofluid over a circular cylinder." International Journal of Numerical Methods for Heat & Fluid Flow 34, no. 2 (2024): 539-580. https://doi.org/10.1108/HFF-05-2023-0237 DOI: https://doi.org/10.1108/HFF-05-2023-0237
Yang, Zixuan, Tim Dissevelt, Nan Li, Erik de Vries, Wouter Grouve, Ningzhong Bao, Matthijn de Rooij, Remko Akkerman, and Liangyong Chu. "The modified boundary layer mechanism for the release between polyimide film and poly (ether ketone ketone) thermoplastics." Journal of Applied Polymer Science 141, no. 20 (2024): e55377. https://doi.org/10.1002/app.55377 DOI: https://doi.org/10.1002/app.55377
Miklavčič, M. and Wang, C.Y. "Viscous flow due to a shrinking sheet." Quarterly of Applied Mathematics 64, no. 2 (2006): 283-290. https://doi.org/10.1090/S0033-569X-06-01002-5 DOI: https://doi.org/10.1090/S0033-569X-06-01002-5
Waini, Iskandar, Anuar Ishak, and Ioan Pop. "Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid." International Journal of Heat and Mass Transfer, 136 (2019): 288-297. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.101 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.101
Khashi'ie, Najiyah Safwa, Iskandar Waini, Abdul Rahman Mohd Kasim, Nurul Amira Zainal, Anuar Ishak, and Ioan Pop. "Magnetohydrodynamic and viscous dissipation effects on radiative heat transfer of non-Newtonian fluid flow past a nonlinearly shrinking sheet: Reiner–Philippoff model." Alexandria Engineering Journal 61, no. 10 (2022): 7605-7617. https://doi.org/10.1016/j.aej.2022.01.014 DOI: https://doi.org/10.1016/j.aej.2022.01.014
Khan, Masood, Latif Ahmad, Muhammad Yasir, and Jawad Ahmed. "Numerical analysis in thermally radiative stagnation point flow of cross nanofluid due to shrinking surface: dual solutions." Applied Nanoscience 13, no. 1 (2023): 573-584. https://doi.org/10.1007/s13204-021-01861-0 DOI: https://doi.org/10.1007/s13204-021-01861-0
Wang, C. Y. "Stagnation flow towards a shrinking sheet." International Journal of Non-Linear Mechanics 43, no. 5 (2008): 377-382. https://doi.org/10.1016/j.ijnonlinmec.2007.12.021 DOI: https://doi.org/10.1016/j.ijnonlinmec.2007.12.021
Uddin, Ziya, Korimerla Sai Vishwak, and Souad Harmand. "Numerical duality of MHD stagnation point flow and heat transfer of nanofluid past a shrinking/stretching sheet: Metaheuristic approach." Chinese Journal of Physics, 73 (2021): 442-461. https://doi.org/10.1016/j.cjph.2021.07.018 DOI: https://doi.org/10.1016/j.cjph.2021.07.018
Khashi’ie, Najiyah Safwa, Norihan Md Arifin, Mohammad Mehdi Rashidi, Ezad Hafidz Hafidzuddin, and Nadihah Wahi. "Magnetohydrodynamics (MHD) stagnation point flow past a shrinking/stretching surface with double stratification effect in a porous medium." Journal of Thermal Analysis and Calorimetry 139 (2020): 3635-3648. https://doi.org/10.1007/s10973-019-08713-8 DOI: https://doi.org/10.1007/s10973-019-08713-8
Norzawary, Nur Hazirah Adilla, Norfifah Bachok, and Fadzilah Md Ali. "Effects of Suction/Injection on Stagnation Point Flow over a Nonlinearly Stretching/Shrinking Sheet in a Carbon Nanotubes." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 76, no. 1 (2020): 30-38. https://doi.org/10.37934/arfmts.76.1.3038 DOI: https://doi.org/10.37934/arfmts.76.1.3038
Anuar, Nur Syazana, Norfifah Bachok, and Ioan Pop. "Influence of MHD hybrid ferrofluid flow on exponentially stretching/shrinking surface with heat source/sink under stagnation point region." Mathematics 9, no. 22 (2021): 2932. https://doi.org/10.3390/math9222932 DOI: https://doi.org/10.3390/math9222932
Ismail, Nurul Syuhada, Norihan Md Arifin, Roslinda Nazar, and Norfifah Bachok. "Stability analysis of unsteady MHD stagnation point flow and heat transfer over a shrinking sheet in the presence of viscous dissipation." Chinese journal of physics 57 (2019): 116-126. https://doi.org/10.1016/j.cjph.2018.12.005 DOI: https://doi.org/10.1016/j.cjph.2018.12.005
Das, Sayan, Anirban Bhattacharjee, and Suman Chakraborty. "Influence of interfacial slip on the suspension rheology of a dilute emulsion of surfactant-laden deformable drops in linear flows." Physics of Fluids 30, no. 3 (2018). https://doi.org/10.1063/1.5022619 DOI: https://doi.org/10.1063/1.5022619
Bureiko, Andrei, Anna Trybala, Nina Kovalchuk, and Victor Starov. "Current applications of foams formed from mixed surfactant–polymer solutions." Advances in Colloid and Interface Science 222 (2015): 670-677. https://doi.org/10.1016/j.cis.2014.10.001 DOI: https://doi.org/10.1016/j.cis.2014.10.001
Beavers, Gordon S., and Daniel D. Joseph. "Boundary conditions at a naturally permeable wall." Journal of fluid mechanics 30, no. 1 (1967): 197-207. https://doi.org/10.1017/S0022112067001375 DOI: https://doi.org/10.1017/S0022112067001375
Wang, C. Y. "Stagnation flows with slip: exact solutions of the Navier-Stokes equations." Zeitschrift für angewandte Mathematik und Physik 1, no. 54 (2003): 184-189. https://doi.org/10.1007/PL00012632 DOI: https://doi.org/10.1007/PL00012632
Mahmood, Zafar, N. Ameer Ahammad, Sharifah E. Alhazmi, Umar Khan, and Mutasem Z. Bani-Fwaz. "Ternary hybrid nanofluid near a stretching/shrinking sheet with heat generation/absorption and velocity slip on unsteady stagnation point flow." International Journal of Modern Physics B 36, no. 29 (2022): 2250209. https://doi.org/10.1142/S0217979222502095 DOI: https://doi.org/10.1142/S0217979222502095
Sarkar, Suman, and Oluwole D. Makinde. "Slip and temperature jump effects of MHD stagnation point flow towards a translating plate considering nonlinear radiations." Heat Transfer 51, no. 8 (2022): 7753-7772. https://doi.org/10.1002/htj.22664 DOI: https://doi.org/10.1002/htj.22664
Gupta, A. S. "Steady and transient free convection of an electrically conducting fluid from a vertical plate in the presence of a magnetic field." Applied Scientific Research 9 (1960): 319-333. https://doi.org/10.1007/BF00382210 DOI: https://doi.org/10.1007/BF00382210
Chen, Hui, Hongxing Liang, Fei Wang, and Ming Shen. "Unsteady MHD Stagnation‐Point Flow Toward a Shrinking Sheet with Thermal Radiation and Slip Effects." Heat Transfer—Asian Research 45, no. 8 (2016): 730-745. https://doi.org/10.1002/htj.21186 DOI: https://doi.org/10.1002/htj.21186
Taiwo, Yusuf S., Dauda Gambo, and Adebayo H. Olaife. "Effect of heat source/sink on MHD start-up natural convective flow in an annulus with isothermal and isoflux boundaries." Arab Journal of Basic and Applied Sciences 27, no. 1 (2020): 365-374. https://doi.org/10.1080/25765299.2020.1827568 DOI: https://doi.org/10.1080/25765299.2020.1827568
Riaz, Muhammad Bilal, Maryam Asgir, A. A. Zafar, and Shaowen Yao. "Combined effects of heat and mass transfer on MHD free convective flow of Maxwell fluid with variable temperature and concentration." Mathematical Problems in Engineering 2021, no. 1 (2021): 6641835. https://doi.org/10.1155/2021/6641835 DOI: https://doi.org/10.1155/2021/6641835
Isa, Siti Suzilliana Putri Mohamed, Hazirah Mohd Azmi, Nanthini Balakrishnan, Aina Suhaiza Mohamad Nazir, Kartini Ahmad, Nurul Syuhada Ismail, Norihan Md Arifin, and Haliza Rosali. "The Soret-Dufour Effects on Three-Dimensional Magnetohydrodynamics Newtonian Fluid Flow over an Inclined Plane." CFD Letters 16, no. 9 (2024): 39-51. https://doi.org/10.37934/cfdl.16.9.3951 DOI: https://doi.org/10.37934/cfdl.16.9.3951
Rosca, Alin V., Natalia C. Rosca, and Ioan Pop. "Numerical simulation of the stagnation point flow past a permeable stretching/shrinking sheet with convective boundary condition and heat generation." International Journal of Numerical Methods for Heat & Fluid Flow 26, no. 1 (2016): 348-364. https://doi.org/10.1108/HFF-12-2014-0361 DOI: https://doi.org/10.1108/HFF-12-2014-0361
Ahmad, Bilal, Z. Iqbal, E. N. Maraj, and S. Ijaz. "Utilization of elastic deformation on Cu–Ag nanoscale particles mixed in hydrogen oxide with unique features of heat generation/absorption: closed form outcomes." Arabian Journal for Science and Engineering 44 (2019): 5949-5960. https://doi.org/10.1007/s13369-019-03773-2 DOI: https://doi.org/10.1007/s13369-019-03773-2
Zainuddin, Nooraini, Nor Ain Azeany Mohd Nasir, Norli Abdullah, Wasim Jamshed, and Anuar Ishak. "Numerical Solution of EMHD GO-Fe3O4/H2O Flow and Heat Transfer over Moving Riga Plate with Thermal Radiation and Heat Absorption/Generation Impacts." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 112, no. 1 (2023): 62-75. https://doi.org/10.37934/arfmts.112.1.6275 DOI: https://doi.org/10.37934/arfmts.112.1.6275
Khashi'ie, Najiyah Safwa, Iskandar Waini, Nur Syahirah Wahid, Norihan Md Arifin, and Ioan Pop. "Unsteady separated stagnation point flow due to an EMHD Riga plate with heat generation in hybrid nanofluid." Chinese Journal of Physics 81 (2023): 181-192. https://doi.org/10.1016/j.cjph.2022.10.010 DOI: https://doi.org/10.1016/j.cjph.2022.10.010
Reddy, M. Gnaneswara. "Influence of Magnetohydrodynamic and Thermal Radiation Boundary Layer Flow of a Nanofluid Past a Stretching Sheet." Journal of Scientific Research 6, no. 2 (2014).
https://doi.org/10.3329/jsr.v6i2.17233 DOI: https://doi.org/10.3329/jsr.v6i2.17233
Hazarika, G. C. and Lurinjyoti Gogoi, 2017. "Effects of variable viscosity and thermal conductivity on mhd free convective heat and mass transfer flow past an inclined surface with heat generation", International Journal of Computer Applications(11), 167:47-51. https://doi.org/10.5120/ijca2017914449 DOI: https://doi.org/10.5120/ijca2017914449
Lin, Jaw‐Ren, Rong-Fang Lu, Tzu-Chen Hung, and Long‐Jin Liang, 2012. "Effects of magnetic fields on the dynamic characteristics of wide parallel step slider bearings with electrically conducting fluids", Lubrication Science(5), 24:238-250. https://doi.org/10.1002/ls.1177 DOI: https://doi.org/10.1002/ls.1177
Pop, Ioan, Anuar Ishak, and Fazlina Aman. "Radiation effects on the MHD flow near the stagnation point of a stretching sheet: revisited." Zeitschrift für angewandte Mathematik und Physik 62 (2011): 953-956. https://doi.org/10.1007/s00033-011-0131-6 DOI: https://doi.org/10.1007/s00033-011-0131-6
Ray Mahapatra, Tapas, Samir Kumar Nandy, and Ioan Pop. "Dual solutions in magnetohydrodynamic stagnation-point flow and heat transfer over a shrinking surface with partial slip." Journal of Heat Transfer 136, no. 10 (2014): 104501. https://doi.org/10.1115/1.4024592 DOI: https://doi.org/10.1115/1.4024592
Merkin, J. H. "On dual solutions occurring in mixed convection in a porous medium." Journal of engineering Mathematics 20, no. 2 (1986): 171-179. https://doi.org/10.1007/BF00042775 DOI: https://doi.org/10.1007/BF00042775
Weidman, P. D., D. G. Kubitschek, and A. M. J. Davis. "The effect of transpiration on self-similar boundary layer flow over moving surfaces." International journal of engineering science 44, no. 11-12 (2006): 730-737. https://doi.org/10.1016/j.ijengsci.2006.04.005 DOI: https://doi.org/10.1016/j.ijengsci.2006.04.005
Postelnicu, A., and Ioan Pop. "Falkner–Skan boundary layer flow of a power-law fluid past a stretching wedge." Applied Mathematics and Computation 217, no. 9 (2011): 4359-4368. https://doi.org/10.1016/j.amc.2010.09.037 DOI: https://doi.org/10.1016/j.amc.2010.09.037
Roşca, Alin V., and Ioan Pop. "Flow and heat transfer over a vertical permeable stretching/shrinking sheet with a second order slip." International Journal of Heat and Mass Transfer 60 (2013): 355-364. https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.028 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.028
Harris, S. D., D. B. Ingham, and I. Pop. "Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip." Transport in Porous Media 77 (2009): 267-285. https://doi.org/10.1007/s11242-008-9309-6 DOI: https://doi.org/10.1007/s11242-008-9309-6