Enhancing Thermal Conductivity of TiO2-3%F+/MEG-40 Binary Nanofluid for Sustainable Cooling Systems in Plastic Injection Molding Applications

Authors

  • Sukarman Department of Mechanical Engineering, Faculty of Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Kentingan, Surakarta 57126, Indonesia
  • Budi Kristiawan Department of Mechanical Engineering, Faculty of Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Kentingan, Surakarta 57126, Indonesia
  • Eko Prasetya Budiana Department of Mechanical Engineering, Faculty of Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Kentingan, Surakarta 57126, Indonesia
  • Khoirudin Department of Mechanical Engineering, Faculty of Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Kentingan, Surakarta 57126, Indonesia
  • Amri Abdulah Department of Mechanical Engineering, Faculty of Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Kentingan, Surakarta 57126, Indonesia

DOI:

https://doi.org/10.37934/arfmts.128.2.177187

Keywords:

Binary nanofluid, Brownian motion, electron microscopy, thermal conductivity, TiO2 rutile, SiO2 beta-quartz

Abstract

This study explores thermal conductivity enhancement in nanofluids for high-temperature applications (70–120°C), specifically targeting plastic injection molding. The research investigates two formulations: TiO2-3%/MEG-40 nanofluid, containing 3 vol% TiO2 nanoparticles, and TiO2-3%F8/MEG-40 binary nanofluid, comprising TiO2 rutile and SiO2 beta-quartz composite nanoparticles in a 92:8 ratio with a total volume fraction of 3 vol%. Both nanofluids were synthesized using the two-step method, with grain size confirmed via scanning and transmission electron microscopy. Thermal conductivity was measured using a TEMPOS Thermal Property Analyzer in a highly insulated heating chamber. Results demonstrated significant enhancements in comparison to the base fluid, with TiO2-3%/MEG-40 nanofluid and TiO2-3%F8/MEG-40 binary nanofluid exhibiting an 18% and 22% increase in thermal conductivity at approximately 95°C. Including SiO2 beta-quartz nanoparticles enhanced dispersion, and thermal conductivity, highlighting their critical role in optimizing performance. These findings demonstrate the potential of TiO2 rutile and SiO2 beta-quartz nanofluids to improve thermal management in industrial processes, advancing beyond existing literature by integrating nanoparticle stability with higher temperature thermal performance.

Downloads

Download data is not yet available.

Author Biographies

Sukarman, Department of Mechanical Engineering, Faculty of Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Kentingan, Surakarta 57126, Indonesia

sukarman@student.uns.ac.id

Budi Kristiawan, Department of Mechanical Engineering, Faculty of Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Kentingan, Surakarta 57126, Indonesia

budi_k@staff.uns.ac.id

Eko Prasetya Budiana, Department of Mechanical Engineering, Faculty of Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Kentingan, Surakarta 57126, Indonesia

ekoprasetya@staff.uns.ac.id

Khoirudin, Department of Mechanical Engineering, Faculty of Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Kentingan, Surakarta 57126, Indonesia

khoirudin@student.uns.ac.id

Amri Abdulah, Department of Mechanical Engineering, Faculty of Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Kentingan, Surakarta 57126, Indonesia

amri.abdulah@student.uns.ac.id

Downloads

Published

2025-03-20

How to Cite

Sukarman, S., Kristiawan, B., Prasetya Budiana, E., Khoirudin, K., & Abdulah, A. (2025). Enhancing Thermal Conductivity of TiO2-3%F+/MEG-40 Binary Nanofluid for Sustainable Cooling Systems in Plastic Injection Molding Applications. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 128(2), 177–187. https://doi.org/10.37934/arfmts.128.2.177187

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.