Analysis of Wind Speed Prediction using Artificial Neural Network and Multiple Linear Regression Model using Tinyml on Esp32

Authors

  • Chua Kiang Hong Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
  • Mohd Azlan Abu Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
  • Mohd Ibrahim Shapiai Pattern Recognition & Robotics Automation (PRA), Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
  • Mohamad Fadzli Haniff Intelligent Dynamics & System (IDS) i-Kohza, Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
  • Radhir Sham Mohamad Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
  • Aminudin Abu Intelligent Dynamics & System (IDS) i-Kohza, Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.37934/arfmts.107.1.2944

Keywords:

Embedded system, TinyML, Multiple Linear Regression, ANN, wind speed prediction, ESP32, air quality

Abstract

This study provides the investigation of wind speed forecasting using an Artificial Neural Network (ANN) and Linear Regression Model with an ESP32 chip. A portable wind speed prediction system will aid in mitigating the risks associated with sudden gusts of wind by forecasting the maximum wind speed that may occur in the near future. This research also demonstrates the application of TinyML in the field of Artificial Intelligence (AI) by applying a Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) model to small, low-powered ESP32 microcontrollers to analyse data with low latency. The system predicts wind speed in Setapak, Kuala Lumpur, based on the measured temperature and humidity using a DHT22 sensor and displays forecast results and sensor readings on LCD screens. To measure the accuracy of the MLR and ANN models, the coefficient of determination ( , mean square error (MSE), and root mean square error (RMSE) between predicted and actual results are evaluated. Results indicate that the ANN model outperforms the MLR model for predicting wind speed.

Downloads

Download data is not yet available.

Author Biographies

Chua Kiang Hong, Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

kianghong998@gmail.com

Mohd Azlan Abu, Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

mohdazlan.abu@utm.my

Mohd Ibrahim Shapiai, Pattern Recognition & Robotics Automation (PRA), Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

md_ibrahim83@utm.my

Mohamad Fadzli Haniff, Intelligent Dynamics & System (IDS) i-Kohza, Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

mfadzlihaniff@utm.my

Radhir Sham Mohamad, Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

radhir.kl@utm.my

Aminudin Abu, Intelligent Dynamics & System (IDS) i-Kohza, Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

aminudin.kl@utm.my

Downloads

Published

2023-07-31

How to Cite

Chua Kiang Hong, Mohd Azlan Abu, Mohd Ibrahim Shapiai, Mohamad Fadzli Haniff, Radhir Sham Mohamad, & Aminudin Abu. (2023). Analysis of Wind Speed Prediction using Artificial Neural Network and Multiple Linear Regression Model using Tinyml on Esp32. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 107(1), 29–44. https://doi.org/10.37934/arfmts.107.1.2944

Issue

Section

Articles