Numerical Study of Upward Vertical Two-Phase Flow through an Annulus Concentric Pipe
Keywords:
Two-phase flow pattern, VOF model (volume of fluid), volume fractions, concentric annulusAbstract
This study provides a 3D numerical simulation of two-phase flow in upward vertical annuli pipe using the Fluent CFD commercial code. The condition of two-phase flow was simulated with the Volume of Fluid (VOF) model, taking into consideration turbulence effects using the k-e model. The internal and external diameters of the pipe are DT=12.7 mm, DC=38.1 mm, respectively and length L=16 m. Numerical results were obtained for various values of air velocity,Ug at fixed water velocity (Ul =0.14 m/s). In this numerical simulation, we have identified global flux structures and their transition regimes, such as the size and shape of bubbles, slug and their zigzag and coalescence phenomena. These flow regimes have been clearly influenced by the air velocity. The results obtained have been validated and are consistent with those experimentally reported.