Flow and Thermal Characteristics of Couple Stress Fluid over a Stretching Surface with Hybrid Nanoparticles

Authors

  • Iskandar Waini Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Malaysia
  • Najiyah Safwa Khashi’ie Fakulti Teknologi dan Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal 76100, Melaka, Malaysia
  • Nurul Amira Zainal Fakulti Teknologi dan Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal 76100, Melaka, Malaysia
  • Khairum Hamzah Fakulti Teknologi dan Kejuruteraan Industri dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal 76100, Melaka, Malaysia
  • Abdul Rahman Mohd Kasim Centre for Mathematical Sciences, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, 26300 Kuantan, Pahang, Malaysia
  • Anuar Ishak Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
  • Ioan Pop Department of Mathematics, Babes-Bolyai University, 400084 Cluj-Napoca, Romania

DOI:

https://doi.org/10.37934/arfmts.111.2.107115

Keywords:

Couple stress fluid, hybrid nanofluid, aluminium alloys, methanol, stretching surface

Abstract

In the current research, a mathematical analysis of couple stress fluid flow and heat characteristics through a stretchable permeable surface with hybrid nanoparticles is conducted. The solid nanoparticles of the aluminium alloys (AA7072 and AA7075) are suspended in methanol to create the hybrid nanofluid. The similarity approach is used to reduce the governing equations into the similarity equations. Then, MATLAB's bvp4c function is employed to solve the resulting equations. The solutions for the flow and temperature fields, as well as the skin friction coefficient and Nusselt number are presented in table and graphical forms. The results demonstrate that hybrid nanofluids excel as thermal conductors, significantly augmenting the heat transfer rate. The heat transfer rate is increased by 0.38% for the nanofluid, while 0.89% increment for the hybrid nanofluid compared to the base fluid. Furthermore, a larger couple stress parameter is found to be associated with a decrease in the fluid temperature and an enhancement in fluid velocity.

Downloads

Download data is not yet available.

Author Biographies

Iskandar Waini, Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Malaysia

iskandarwaini@utem.edu.my

Najiyah Safwa Khashi’ie, Fakulti Teknologi dan Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal 76100, Melaka, Malaysia

najiyah@utem.edu.my

Nurul Amira Zainal, Fakulti Teknologi dan Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal 76100, Melaka, Malaysia

nurulamira@utem.edu.my

Khairum Hamzah, Fakulti Teknologi dan Kejuruteraan Industri dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal 76100, Melaka, Malaysia

khairum@utem.edu.my

Abdul Rahman Mohd Kasim, Centre for Mathematical Sciences, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, 26300 Kuantan, Pahang, Malaysia

rahmanmohd@ump.edu.my

Anuar Ishak, Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia

anuar_mi@ukm.edu.my

Ioan Pop , Department of Mathematics, Babes-Bolyai University, 400084 Cluj-Napoca, Romania

popm.ioan@yahoo.co.uk

Downloads

Published

2023-11-30

How to Cite

Iskandar Waini, Najiyah Safwa Khashi’ie, Nurul Amira Zainal, Khairum Hamzah, Abdul Rahman Mohd Kasim, Anuar Ishak, & Ioan Pop. (2023). Flow and Thermal Characteristics of Couple Stress Fluid over a Stretching Surface with Hybrid Nanoparticles. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 111(2), 107–115. https://doi.org/10.37934/arfmts.111.2.107115

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2 3 4