New Insight into Gyrotactic Microorganisms in Anti-Infection Agents Through Wavy Deformable Catheter/Endoscope with Non-Linear Thermal Radiation: Numerical Study
Keywords:
Peristaltic flow, Jeffrey Fluid, Nanoparticles, Microorganisms, Endoscope, Thermal RadiationAbstract
The reason for this work is to assess the impact of the peristaltic flow of Jeffery nanofluid containing motile gyrotactic microorganisms. This problem can be considered a numerical depiction of the fluid move through an endoscope or catheter tube. Where the catheter is covered with a blend of anti-infection agents and nanoparticles to oppose the formation of vital membranes. The effects of non-linear thermal radiation, viscous dissipation, and magnetic field are taken into consideration. Both inward and the external cylinders have sinusoidal waves traveling along their walls since there is a coupling between the occlusion of the external cylinder and the radius ratio. For long wavelength and low Reynolds number, a numerical study by using the Rung-Kutta-Merson method with Newton iteration in a shooting and matching technique is performed. The effect of physical implanted parameters is represented through a lot of charts for velocity, temperature, nanoparticle concentration, the density of motile microorganisms, shear stress, pressure rise, and pressure gradient.