A Validation Study of the Aerodynamic Behaviour of a Wind Turbine: Three-Dimensional Rotational Case

Authors

  • Khaoula Qaissi Université Internationale de Rabat, School of aerospace and automotive engineering, LERMA Lab, Campus UIR Parc Technopolis, Rocade, Rabat-Sale, 11100 - Sala Al Jadida, Maroc, Morocco
  • Omer Elsayed Université Internationale de Rabat, School of aerospace and automotive engineering, LERMA Lab, Campus UIR Parc Technopolis, Rocade, Rabat-Sale, 11100 - Sala Al Jadida, Maroc, Morocco
  • Mustapha Faqir Université Internationale de Rabat, School of aerospace and automotive engineering, LERMA Lab, Campus UIR Parc Technopolis, Rocade, Rabat-Sale, 11100 - Sala Al Jadida, Maroc, Morocco
  • Elhachmi Essadiqi Université Internationale de Rabat, School of aerospace and automotive engineering, LERMA Lab, Campus UIR Parc Technopolis, Rocade, Rabat-Sale, 11100 - Sala Al Jadida, Maroc, Morocco

DOI:

https://doi.org/10.37934/cfdl.13.9.112

Keywords:

NREL phase VI, wind turbine, CFD, K-omega SST, Flow Separation

Abstract

Numerical modelling and simulation of a rotating, tapered, and twisted three-dimensional blade with turbulent inflow conditions and separating flows is a challenging case in Computational Fluid Dynamics (CFD). The numerical simulation of the fluid flow behaviour over a wind turbine blade is important for the design of efficient machines. This paper presents a numerical validation study using the experimental data collected by the National Renewable Energy Laboratory (NREL). All the simulations are performed on the sequence S of the extensive experimental sequences conducted at the NASA/Ames wind tunnel with constant RPM and variable wind speeds. The results show close agreement with the NREL UAE experimental data. The CFD model captures closely the totality of the defining quantities. The shaft torque is well-predicted pre-stall but under-predicted in the stall region. The three-dimensional flow and stall are well captured and demonstrated in this paper. Results show attached flow in the pre-stall region. The separation appears at a wind speed of 10 m/s near the blade root. For V>10m/s, the blade appears to experience a deep stall from root to tip.

Downloads

Download data is not yet available.

References

Khattak, M. A., NS Mohd Ali, NH Zainal Abidin, N. S. Azhar, and M. H. Omar. "Common Type of Turbines in Power Plant: A Review." Journal of Advanced Research in Applied Sciences and Engineering Technology 3, no. 1 (2016): 77-100.

Akhter, Md, and Farag Khalifa Omar. "Review of Flow‐Control Devices for Wind‐Turbine Performance Enhancement." Energies 14, no. 5 (2021): 1268. https://doi.org/10.3390/en14051268

Rose, J. Bruce Ralphin, S. Ganesh Natarajan, and V. T. Gopinathan. "Biomimetic flow control techniques for aerospace applications: a comprehensive review." Reviews in Environmental Science and Bio/Technology (2021): 1-3. https://doi.org/10.1007/s11157-021-09583-z

Simms, David, Scott Schreck, Maureen Hand, and Lee Jay Fingersh. NREL unsteady aerodynamics experiment in the NASA-Ames wind tunnel: a comparison of predictions to measurements. No. NREL/TP-500-29494. National Renewable Energy Lab., Golden, CO (US), 2001. https://doi.org/10.2172/783409

Giguere, P., and Michael S. Selig. Design of a tapered and twisted blade for the NREL combined experiment rotor. No. NREL/SR-500-26173. National Renewable Energy Lab., Golden, CO (US), 1999. https://doi.org/10.2172/750919

Hand, M. Maureen, D. A. Simms, L. J. Fingersh, D. W. Jager, J. R. Cotrell, S. Schreck, and S. M. Larwood. Unsteady aerodynamics experiment phase VI: wind tunnel test configurations and available data campaigns. No. NREL/TP-500-29955. National Renewable Energy Lab., Golden, CO.(US), 2001. https://doi.org/10.2172/15000240

Jonkman, Jason Mark. Modeling of the UAE Wind Turbine for Refinement of FAST {_} AD. No. NREL/TP-500-34755. National Renewable Energy Lab., Golden, CO (US), 2003. https://doi.org/10.2172/15005920

Wang, Qiang, Hu Zhou, and Decheng Wan. "Numerical simulation of wind turbine blade-tower interaction." Journal of Marine Science and Application 11, no. 3 (2012): 321-327. https://doi.org/10.1007/s11804-012-1139-9

Gomez-Iradi, S., R. Steijl, and G. N. Barakos. "Development and validation of a CFD technique for the aerodynamic analysis of HAWT." Journal of Solar Energy Engineering 131, no. 3 (2009). https://doi.org/10.1115/1.3139144

Zahle, Frederik. "Wind turbine aerodynamics using an incompressible overset grid method." (2006). https://doi.org/10.2514/6.2007-425

Hsu, Ming-Chen, and Yuri Bazilevs. "Fluid–structure interaction modeling of wind turbines: simulating the full machine." Computational Mechanics 50, no. 6 (2012): 821-833. https://doi.org/10.1007/s00466-012-0772-0

Lee, Kyoungsoo, Ziaul Huque, Raghava Kommalapati, and Sang-Eul Han. "Evaluation of equivalent structural properties of NREL phase VI wind turbine blade." Renewable Energy 86 (2016): 796-818. https://doi.org/10.1016/j.renene.2015.07.096

Pape, A. Le, and J. Lecanu. "3D Navier–Stokes computations of a stall‐regulated wind turbine." Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology 7, no. 4 (2004): 309-324. https://doi.org/10.1002/we.129

Sorensen, N. N., J. A. Michelsen, and S. Schreck. "Navier-Stokes predictions of the NREL phase VI rotor in the NASA Ames 80-by-120 wind tunnel." In Wind Energy Symposium, vol. 7476, pp. 94-105. 2002. https://doi.org/10.2514/6.2002-31

Mahu, R., F. Popescu, F. Frunzulică, and Al Dumitrache. "3D CFD modeling and simulation of NREL phase VI rotor." In AIP Conference Proceedings, vol. 1389, no. 1, pp. 1520-1523. American Institute of Physics, 2011. https://doi.org/10.1063/1.3637914

Song, Yang, and J. Blair Perot. "Cfd simulation of the nrel phase vi rotor." Wind engineering 39, no. 3 (2015): 299-309. https://doi.org/10.1260/0309-524X.39.3.299

Aksenov, Andrey, Utkudeniz Ozturk, Cloud Yu, Petr Byvaltsev, Sinan Soganci, and Oguz Tutkun. "A validation study using nrel phase VI experiments, Part I: Low computational resource scenario." In 12 th European Conference on Turbomachinery Fluid dynamics & Thermodynamics. EUROPEAN TURBOMACHINERY SOCIETY, 2017. https://doi.org/10.29008/ETC2017-365

Chaviaropoulos, P. K., and Martin OL Hansen. "Investigating three-dimensional and rotational effects on wind turbine blades by means of a quasi-3D Navier-Stokes solver." J. Fluids Eng. 122, no. 2 (2000): 330-336. https://doi.org/10.1115/1.483261

Akbarzadeh, A. M., and I. Borazjani. "Controlling flow separation on a thick airfoil using backward traveling waves." AIAA Journal 58, no. 9 (2020): 3799-3807. https://doi.org/10.2514/1.J059428

Colonius, T., and W. F. J. Olsman. "Numerical Simulation of Flow over an Airfoil with a Cavity." AIAA Journal 49, no. 1 (2011).

Davide, L., D. Raffaele, F. D. Gregorio, and G. Iuso. "Effects of a trapped vortex cell on a thick wing airfoil." Exp Fluids 51 (2011): 1369-1384. https://doi.org/10.1007/s00348-011-1160-9

Vuddagiri, Aswin, Paresh Halder, Abdus Samad, and Abhijit Chaudhuri. "Flow analysis of airfoil having different cavities on its suction surface." Progress in Computational Fluid Dynamics, an International Journal 16, no. 2 (2016): 67-77. https://doi.org/10.1504/PCFD.2016.075151

Wang, Jinjun, and Lihao Feng. Flow control techniques and applications. Cambridge University Press, 2019.

Menezes, Eduardo José Novaes, Alex Maurício Araújo, and Nadège Sophie Bouchonneau da Silva. "A review on wind turbine control and its associated methods." Journal of cleaner production 174 (2018): 945-953. https://doi.org/10.1016/j.jclepro.2017.10.297

Simms, Dave, Maureen Hand, Dave Jager, Jason Cotrell, Mike Robinson, Scott Schreck, Scott Larwood, and Lee Fingersh. "Wind tunnel testing of NREL's unsteady aerodynamics experiment." In 20th 2001 ASME Wind Energy Symposium, p. 35. 2013. https://doi.org/10.2514/6.2001-35

Chao, D. D., and C. P. Van Dam. "Computational aerodynamic analysis of a blunt trailing‐edge airfoil modification to the NREL Phase VI rotor." Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology 10, no. 6 (2007): 529-550. https://doi.org/10.1002/we.239

Moshfeghi, Mohammad, Ya Jun Song, and Yong Hui Xie. "Effects of near-wall grid spacing on SST-K-ω model using NREL Phase VI horizontal axis wind turbine." Journal of Wind Engineering and Industrial Aerodynamics 107 (2012): 94-105. https://doi.org/10.1016/j.jweia.2012.03.032

Downloads

Published

2021-09-30

How to Cite

Khaoula Qaissi, Omer Elsayed, Mustapha Faqir, & Elhachmi Essadiqi. (2021). A Validation Study of the Aerodynamic Behaviour of a Wind Turbine: Three-Dimensional Rotational Case. CFD Letters, 13(9), 1–12. https://doi.org/10.37934/cfdl.13.9.112

Issue

Section

Articles