Computational Prediction of Co-firing with Various Biomass Waste Using Turbulent Non-Premixed Combustion

Authors

  • Agus Nuryadi Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, South Tangerang, Indonesia
  • Muhammad Penta Helios Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, South Tangerang, Indonesia
  • Chairunnisa Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, South Tangerang, Indonesia
  • Fitrianto Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, South Tangerang, Indonesia
  • Hariyotejo Pujowidodo Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, South Tangerang, Indonesia
  • Himawan Sutriyanto Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, South Tangerang, Indonesia
  • Achmad Maswan Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, South Tangerang, Indonesia
  • Bambang Teguh Prasetyo Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, South Tangerang, Indonesia
  • Kanon Prabandaru Sumarah Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, South Tangerang, Indonesia
  • I.G.A. Uttariyani Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, South Tangerang, Indonesia
  • Respatya Teguh Soewono Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, South Tangerang, Indonesia
  • Ade Andini Research Center for Process and Manufacturing Industry Technology, National Research and Innovation Agency South Tangerang 15314, Banten, Indonesia

DOI:

https://doi.org/10.37934/cfdl.17.4.89106

Keywords:

Biomass waste, Coal, co-firing, drop tube furnace, Non-premixed combustion, The Probability Density Function

Abstract

Co-firing in coal power plants has limitations because the existing combustion systems are designed to provide optimal performance only with coal. Therefore, investigating the combustion aspects of co-firing by mixing coal with biomass before applying it to existing coal power plants is necessary. To address this, a new numerical model was developed to predict the co-firing behavior of coal with various types of biomass waste, specifically focusing on temperature and pollutant behavior. This study developed a co-firing model in a Drop Tube Furnace (DTF) using a composition of 25% Wood Chips (WC), 25% Solid Recovered Fuel (SRF), 25% Empty Fruit Bunch Fibers (EFFR), and 25% Rice Husk (RH). A structured grid arrangement and the Probability Density Function (PDF) were utilized to depict the relationship between chemical combustion and turbulence. The distributions of temperature and mass fractions of pollutants along the furnace axis were predicted. The highest temperature was observed with 25% EFFR, attributed to its highest volatile matter content. The simulation predicted that 25% RH would be the lowest SO2 emitter. However, it also showed a slight increase in NO and CO levels due to the increased oxygen content when coal was mixed with biomass. The simulation with 25% EFFR predicted a decrease in CO2 emissions compared to other biomass types. The results of this parametric investigation could support the implementation of biomass co-firing technology in existing coal-fired power plants.

Downloads

Download data is not yet available.

Author Biographies

Agus Nuryadi, Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, South Tangerang, Indonesia

agus130@brin.go.id

Muhammad Penta Helios, Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, South Tangerang, Indonesia

muha132@brin.go.id

Chairunnisa, Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, South Tangerang, Indonesia

chairunnisa@brin.go.id

Fitrianto, Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, South Tangerang, Indonesia

fitrianto@brin.go.id

Hariyotejo Pujowidodo, Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, South Tangerang, Indonesia

hari016@brin.go.id

Himawan Sutriyanto, Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, South Tangerang, Indonesia

hima002@brin.go.id

Achmad Maswan, Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, South Tangerang, Indonesia

achm025@brin.go.id

Bambang Teguh Prasetyo, Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, South Tangerang, Indonesia

rbam001@brin.go.id

Kanon Prabandaru Sumarah, Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, South Tangerang, Indonesia

kano001@brin.go.id

I.G.A. Uttariyani, Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, South Tangerang, Indonesia

igau001@brin.go.id

Respatya Teguh Soewono, Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, South Tangerang, Indonesia

resp002@brin.go.id

Ade Andini, Research Center for Process and Manufacturing Industry Technology, National Research and Innovation Agency South Tangerang 15314, Banten, Indonesia

adea003@brin.go.id

References

Popp, József, Sándor Kovács, Judit Oláh, Zoltán Divéki, and Ervin Balázs. "Bioeconomy: Biomass and biomass-based energy supply and demand." New biotechnology 60 (2021): 76-84.https://doi.org/10.1016/j.nbt.2020.10.004 DOI: https://doi.org/10.1016/j.nbt.2020.10.004

Saleem, Muhammad. "Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source." Heliyon 8, no. 2 (2022). https://doi.org/10.1016/j.heliyon.2022.e08905 DOI: https://doi.org/10.1016/j.heliyon.2022.e08905

Farine, Damien R., Deborah A. O'Connell, Robert John Raison, Barrie M. May, Michael H. O'Connor, Debbie F. Crawford, Alexander Herr et al. "An assessment of biomass for bioelectricity and biofuel, and for greenhouse gas emission reduction in A ustralia." Gcb Bioenergy 4, no. 2 (2012): 148-175. https://doi.org/10.1111/j.1757-1707.2011.01115.x DOI: https://doi.org/10.1111/j.1757-1707.2011.01115.x

Sung, Yonmo, Sangmin Lee, Changhyun Kim, Dongheon Jun, Cheoreon Moon, Gyungmin Choi, and Duckjool Kim. "Synergistic effect of co-firing woody biomass with coal on NOx reduction and burnout during air-staged combustion." Experimental Thermal and Fluid Science 71 (2016): 114-125. https://doi.org/10.1016/j.expthermflusci.2015.10.018 DOI: https://doi.org/10.1016/j.expthermflusci.2015.10.018

Rehfeldt, Matthias, Ernst Worrell, Wolfgang Eichhammer, and Tobias Fleiter. "A review of the emission reduction potential of fuel switch towards biomass and electricity in European basic materials industry until 2030." Renewable and Sustainable Energy Reviews 120 (2020): 109672. https://doi.org/10.1016/j.rser.2019.109672 DOI: https://doi.org/10.1016/j.rser.2019.109672

Yang, Qing, Hewen Zhou, Pietro Bartocci, Francesco Fantozzi, Ondřej Mašek, Foster A. Agblevor, Zhiyu Wei et al. "Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals." Nature communications 12, no. 1 (2021): 1-12. https://doi.org/10.1038/s41467-021-21868-z DOI: https://doi.org/10.1038/s41467-021-21868-z

Primadita, Dony Septa, I. N. S. Kumara, and W. G. Ariastina. "A review on biomass for electricity generation in Indonesia." Journal of Electrical, Electronics and Informatics 4, no. 1 (2020): 1-9. https://doi.org/10.24843/JEEI.2020.v04.i01.p01 DOI: https://doi.org/10.24843/JEEI.2020.v04.i01.p01

Smoot, L. Douglas, and Larry L. Baxter. "Fossil fuel power stations—coal utilization." (2003): 121-144. https://doi.org/10.1016/B0-12-227410-5/00257-X DOI: https://doi.org/10.1016/B0-12-227410-5/00257-X

Ministry of Energy and Mineral Resources of Indonesia, “Co-firing plan at coal power plant,” 2021.

Basu, Prabir. Biomass gasification, pyrolysis and torrefaction: practical design and theory. Academic press, 2018. https://doi.org/10.1016/C2016-0-04056-1 DOI: https://doi.org/10.1016/B978-0-12-812992-0.00007-8

Triani, Meiri, Fefria Tanbar, Nur Cahyo, Ruly Sitanggang, Dadan Sumiarsa, and Gemilang Lara Utama. "The The Potential Implementation of Biomass Co-firing with Coal in Power Plant on Emission and Economic Aspects: A Review." EKSAKTA: Journal of Sciences and Data Analysis (2022). https://doi.org/10.20885/EKSAKTA.vol3.iss2.art4 DOI: https://doi.org/10.20885/EKSAKTA.vol3.iss2.art4

IRENA, “Biomass Co- firing Technology Brief,” no. January, 2013.

Xu, Yan, Kun Yang, Jiahui Zhou, and Guohao Zhao. "Coal-biomass co-firing power generation technology: Current status, challenges and policy implications." Sustainability 12, no. 9 (2020): 3692. https://doi.org/10.3390/su12093692 DOI: https://doi.org/10.3390/su12093692

Roni, Mohammad S., Sudipta Chowdhury, Saleh Mamun, Mohammad Marufuzzaman, William Lein, and Samuel Johnson. "Biomass co-firing technology with policies, challenges, and opportunities: A global review." Renewable and Sustainable Energy Reviews 78 (2017): 1089-1101. https://doi.org/10.1016/j.rser.2017.05.023 DOI: https://doi.org/10.1016/j.rser.2017.05.023

Bioenergy, I. E. A. "The Availability of Biomass Resources for Energy: Summary and Conclusions from the IEA Bioenergy ExCo58 Workshop." IEA Bioenergy: ExCo2008 2 (2008).

Lim, Chun Hsion, Sue Lin Ngan, Wendy Pei Qin Ng, Bing Shen How, and Hon Loong Lam. "Biomass supply chain management and challenges." In Value-Chain of Biofuels, pp. 429-444. Elsevier, 2022. https://doi.org/10.1016/B978-0-12-824388-6.00016-6 DOI: https://doi.org/10.1016/B978-0-12-824388-6.00016-6

McEvilly, Gerard, Srian Abeysuriya, and Stuart Dix. Facilitating the adoption of biomass co-firing for power generation. No. INIS-AU--0086. Rural Industries Research and Development Corporation, 2011.

Adhiguna, Putra. "Indonesia’s Biomass Cofiring Bet." Indonesia: IEEFA. org (2021). https://doi.org/11.1080/40332470.2021.10468487

Sivabalan, K., Suhaimi Hassan, Hamdan Ya, and Jagadeesh Pasupuleti. "A review on the characteristic of biomass and classification of bioenergy through direct combustion and gasification as an alternative power supply." In Journal of physics: conference series, vol. 1831, no. 1, p. 012033. IOP Publishing, 2021. https://doi.org/10.1088/1742-6596/1831/1/012033 DOI: https://doi.org/10.1088/1742-6596/1831/1/012033

Nuamah, A., A. Malmgren, G. Riley, and E. Lester. "Biomass co-firing." (2012): 55-73.https://doi.org/10.1016/B978-0-08-087872-0.00506-0 DOI: https://doi.org/10.1016/B978-0-08-087872-0.00506-0

Demirbas, Ayhan. "Combustion characteristics of different biomass fuels." Progress in energy and combustion science 30, no. 2 (2004): 219-230. https://doi.org/10.1016/j.pecs.2003.10.004 DOI: https://doi.org/10.1016/j.pecs.2003.10.004

Lalak, Justyna, Danuta Martyniak, Agnieszka Kasprzycka, Grzegorz Zurek, Wojciech Moron, Mariola Chmielewska, Dariusz Wiacek, and Jerzy Tys. "Comparison of selected parameters of biomass and coal." International Agrophysics 30, no. 4 (2016). https://doi.org/10.1515/intag-2016-0021 DOI: https://doi.org/10.1515/intag-2016-0021

Rahmanian, Behnam, Mohammad Reza Safaei, Salim Newaz Kazi, Goodarz Ahmadi, Hakan F. Oztop, and Kambiz Vafai. "Investigation of pollutant reduction by simulation of turbulent non-premixed pulverized coal combustion." Applied thermal engineering 73, no. 1 (2014): 1222-1235. https://doi.org/10.1016/j.applthermaleng.2014.09.016 DOI: https://doi.org/10.1016/j.applthermaleng.2014.09.016

Nielsen, Hanne Philbert, Flemming Jappe Frandsen, Kim Dam-Johansen, and L. L. Baxter. "The implications of chlorine-associated corrosion on the operation of biomass-fired boilers." Progress in energy and combustion science 26, no. 3 (2000): 283-298. https://doi.org/10.1016/S0360-1285(00)00003-4 DOI: https://doi.org/10.1016/S0360-1285(00)00003-4

Meng, Xiaoxiao, Wei Zhou, Emad Rokni, Guoyou Chen, Rui Sun, and Yiannis A. Levendis. "Release of alkalis and chlorine from combustion of waste pinewood in a fixed bed." Energy & Fuels 33, no. 2 (2019): 1256-1266. https://doi.org/10.1021/acs.energyfuels.8b03970 DOI: https://doi.org/10.1021/acs.energyfuels.8b03970

Wang, Yongzheng, Yu Sun, Maozhen Yue, and Yungang Li. "Reaction kinetics of chlorine corrosion to heating surfaces during coal and biomass cofiring." Journal of Chemistry 2020, no. 1 (2020): 2175795. https://doi.org/10.1155/2020/2175795 DOI: https://doi.org/10.1155/2020/2175795

Broström, Markus. "Aspects of alkali chloride chemistry on deposit formation and high temperature corrosion in biomass and waste fired boilers." PhD diss., Umeå universitet, Institutionen för tillämpad fysik och elektronik, avdelningen energiteknik och termisk processkemi, 2010. http://www.diva-portal.org/smash/get/diva2:317028/FULLTEXT01.pdfMarkusMarkus

Ghenai, Chaouki, and Isam Janajreh. "CFD analysis of the effects of co-firing biomass with coal." Energy conversion and management 51, no. 8 (2010): 1694-1701. https://doi.org/10.1016/j.enconman.2009.11.045 DOI: https://doi.org/10.1016/j.enconman.2009.11.045

Li, Jun, Artur Brzdekiewicz, Weihong Yang, and Wlodzimierz Blasiak. "Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching." Applied Energy 99 (2012): 344-354. https://doi.org/10.1016/j.apenergy.2012.05.046 DOI: https://doi.org/10.1016/j.apenergy.2012.05.046

Utomo, MSK Tony Suryo, Eflita Yohana, and Habib Indra Karim. "Numerical Analysis of the Co-firing Combustion of Coal and Palm Shell Kernel In Stoker Boiler." CFD Letters 16, no. 8 (2024): 163-175. https://doi.org/10.37934/cfdl.16.8.163175 DOI: https://doi.org/10.37934/cfdl.16.8.163175

Tamura, Masato, Shinji Watanabe, Naoya Kotake, and Masahiro Hasegawa. "Grinding and combustion characteristics of woody biomass for co-firing with coal in pulverised coal boilers." Fuel 134 (2014): 544-553. https://doi.org/10.1016/j.fuel.2014.05.083 DOI: https://doi.org/10.1016/j.fuel.2014.05.083

Darmawan, Arif, Dwika Budianto, Muhammad W. Ajiwibowo, Muhammad Aziz, and Koji Tokimatsu. "Coal co-firing with hydrothermally-treated empty fruit bunch using computational fluid dynamics." Chemical Engineering Transactions 70 (2018): 2101-2106. https://doi.org/10.3303/CET1870351

Milićević, Aleksandar, Srdjan Belošević, Nenad Crnomarković, Ivan Tomanović, Andrijana Stojanović, Dragan Tucaković, Lei Deng, and Defu Che. "Numerical study of co-firing lignite and agricultural biomass in utility boiler under variable operation conditions." International Journal of Heat and Mass Transfer 181 (2021): 121728. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121728 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2021.121728

Sun, Jinyu, Xiaojun Zhao, and Dongfa Xue. "Computational fluid dynamics modeling of biomass co-firing in a 300 MW pulverized coal furnace." Thermal Science 26, no. 5 Part B (2022): 4179-4191. https://doi.org/10.2298/TSCI2205179S DOI: https://doi.org/10.2298/TSCI2205179S

Pratt, David T., L. Smoot, and D. Pratt. Pulverized coal combustion and gasification. Berlin: Springer, 1979. https://doi.org/10.1007/978-1-4757-1696-2 DOI: https://doi.org/10.1007/978-1-4757-1696-2

Sahajwalla, Veena, Amir Eghlimi, and K. Farrell. "Numerical simulation of pulverized coal combustion." (1997).

Sijerčić, Miroslav, Srđan V. Belošević, and Predrag Stefanović. "Modeling of pulverized coal combustion stabilization by means of plasma torches." Thermal science 9, no. 2 (2005): 57-72.https://doi.org/10.2298/TSCI0502057S DOI: https://doi.org/10.2298/TSCI0502057S

Zhu, Bo, Bichen Shang, Xiao Guo, Chao Wu, Xiaoqiang Chen, and Lingling Zhao. "Study on combustion characteristics and NOx formation in 600 MW coal-fired boiler based on numerical simulation." Energies 16, no. 1 (2022): 262. https://doi.org/10.3390/en16010262 DOI: https://doi.org/10.3390/en16010262

Bienstock, Daniel, Robert L. Amsler, and Edgar R. Bauer Jr. "Formation of oxides of nitrogen in pulverized coal combustion." Journal of the Air Pollution Control Association 16, no. 8 (1966): 442-445. https://doi.org/10.1080/00022470.1966.10468498 DOI: https://doi.org/10.1080/00022470.1966.10468498

Perrone, D., T. Castiglione, P. Morrone, S. Barbarelli, and M. Amelio. "NOx emissions for oxy-mild combustion of pulverized coal in high temperature pre-heated oxygen." Energy Procedia 148 (2018): 567-574. https://doi.org/10.1016/j.egypro.2018.08.143 DOI: https://doi.org/10.1016/j.egypro.2018.08.143

Gao, Dong, Liwen Guo, Fusheng Wang, and Zhiming Zhang. "Study on the spontaneous combustion tendency of coal based on grey relational and multiple regression analysis." ACS omega 6, no. 10 (2021): 6736-6746. https://doi.org/10.1021/acsomega.0c05736 DOI: https://doi.org/10.1021/acsomega.0c05736

Zhou, Hao, Jia Pei Zhao, Li Gang Zheng, Chun Lin Wang, and Ke Fa Cen. "Modeling NOx emissions from coal-fired utility boilers using support vector regression with ant colony optimization." Engineering Applications of Artificial Intelligence 25, no. 1 (2012): 147-158. https://doi.org/10.1016/j.engappai.2011.08.005 DOI: https://doi.org/10.1016/j.engappai.2011.08.005

Gou, Xiang, Junhu Zhou, Jianzhong Liu, and Kefa Cen. "Research on regression model of pulverized coal ignition temperature." Energy Educ. Sci. Technol. Part A 28 (2011): 143-150.

Ettouati, H., Ahmed Boutoub, H. Benticha, and M. Sassi. "Radiative Heat Transfer in Pulverized Coal Combustion: Effects of Gas and Particles Distributions." Turkish Journal of Engineering & Environmental Sciences 31, no. 6 (2007).

Madejski, Paweł. "Numerical study of a large-scale pulverized coal-fired boiler operation using CFD modeling based on the probability density function method." Applied Thermal Engineering 145 (2018): 352-363. https://doi.org/10.1016/j.applthermaleng.2018.09.004 DOI: https://doi.org/10.1016/j.applthermaleng.2018.09.004

Stöllinger, Michael, Bertrand Naud, Dirk Roekaerts, Nijso Beishuizen, and Stefan Heinz. "PDF modeling and simulations of pulverized coal combustion–Part 2: Application." Combustion and flame 160, no. 2 (2013): 396-410. https://doi.org/10.1016/j.combustflame.2012.10.011 DOI: https://doi.org/10.1016/j.combustflame.2012.10.011

Zheng, Jianxiang, Bingyang Liu, and Bei Liu. "Simulation of Pulverized Coal Combustion Process Considering Turbulence–Radiation Interaction." ACS omega 8, no. 14 (2023): 12944-12954. https://doi.org/10.1021/acsomega.3c00115

Zheng, Jianxiang, Bingyang Liu, and Bei Liu. "Simulation of Pulverized Coal Combustion Process Considering Turbulence–Radiation Interaction." ACS omega 8, no. 14 (2023): 12944-12954. https://doi.org/10.1021/acsomega.3c00115 DOI: https://doi.org/10.1021/acsomega.3c00115

Rieth, M., A. G. Clements, M. Rabaçal, F. Proch, O. T. Stein, and A. M. Kempf. "Flamelet LES modeling of coal combustion with detailed devolatilization by directly coupled CPD." Proceedings of the Combustion Institute 36, no. 2 (2017): 2181-2189. https://doi.org/10.1016/j.proci.2016.06.077 DOI: https://doi.org/10.1016/j.proci.2016.06.077

Sun, Wenjing, Wenqi Zhong, and Tarek Echekki. "Large eddy simulation of non-premixed pulverized coal combustion in corner-fired furnace for various excess air ratios." Applied Mathematical Modelling 74 (2019): 694-707. https://doi.org/10.1016/j.apm.2019.05.017 DOI: https://doi.org/10.1016/j.apm.2019.05.017

Sun, Wenjing, Wenqi Zhong, Jingzhou Zhang, and Tarek Echekki. "Large eddy simulation on the effects of coal particles size on turbulent combustion characteristics and NOx formation inside a corner-fired furnace." Journal of Energy Resources Technology 143, no. 8 (2021): 082302. https://doi.org/10.1115/1.4048864 DOI: https://doi.org/10.1115/1.4048864

Putra, Hanafi Prida, Edi Hilmawan, Arif Darmawan, Keiichi Mochida, and Muhammad Aziz. "Theoretical and experimental investigation of ash-related problems during coal co-firing with different types of biomass in a pulverized coal-fired boiler." Energy 269 (2023): 126784. https://doi.org/10.1016/j.energy.2023.126784 DOI: https://doi.org/10.1016/j.energy.2023.126784

Hariana, Feri Karuana, Prabowo, Edi Hilmawan, Arif Darmawan, and Muhammad Aziz. "Effects of different coals for Co-combustion with palm oil waste on slagging and fouling aspects." Combustion Science and Technology (2022): 1-23. https://doi.org/10.1080/00102202.2022.2152684 DOI: https://doi.org/10.1080/00102202.2022.2152684

Prismantoko, Adi, Edi Hilmawan, Arif Darmawan, and Muhammad Aziz. "Effectiveness of different additives on slagging and fouling tendencies of blended coal." Journal of the Energy Institute 107 (2023): 101192. https://doi.org/10.1016/j.joei.2023.101192 DOI: https://doi.org/10.1016/j.joei.2023.101192

Echekki, Tarek, and Epaminondas Mastorakos. "Turbulent combustion: concepts, governing equations and modeling strategies." In Turbulent Combustion Modeling: Advances, New Trends and Perspectives, pp. 19-39. Dordrecht: Springer Netherlands, 2011. https://doi.org/10.1007/978-94-007-0412-1 DOI: https://doi.org/10.1007/978-94-007-0412-1_2

Li, Z. Q., Fei Wei, and Yong Jin. "Numerical simulation of pulverized coal combustion and NO formation." Chemical engineering science 58, no. 23-24 (2003): 5161-5171. https://doi.org/10.1016/j.ces.2003.08.012 DOI: https://doi.org/10.1016/j.ces.2003.08.012

Yan, Binhang, Yi Cheng, Yong Jin, and Cliff Yi Guo. "Analysis of particle heating and devolatilization during rapid coal pyrolysis in a thermal plasma reactor." Fuel processing technology 100 (2012): 1-10. https://doi.org/10.1016/j.fuproc.2012.02.009 DOI: https://doi.org/10.1016/j.fuproc.2012.02.009

Broukal, Jakub, and Jiří Hájek. "Validation of an effervescent spray model with secondary atomization and its application to modeling of a large-scale furnace." Applied Thermal Engineering 31, no. 13 (2011): 2153-2164. https://doi.org/10.1016/j.applthermaleng.2011.04.025 DOI: https://doi.org/10.1016/j.applthermaleng.2011.04.025

Goodarzi, M., M. R. Safaei, Hakan F. Oztop, A. Karimipour, E. Sadeghinezhad, M. Dahari, S. N. Kazi, and N. Jomhari. "Numerical study of entropy generation due to coupled laminar and turbulent mixed convection and thermal radiation in an enclosure filled with a semitransparent medium." The Scientific World Journal 2014, no. 1 (2014): 761745. https://doi.org/10.1155/2014/761745 DOI: https://doi.org/10.1155/2014/761745

Pirker, S., D. Kahrimanovic, and C. Goniva. "Improving the applicability of discrete phase simulations by smoothening their exchange fields." Applied Mathematical Modelling 35, no. 5 (2011): 2479-2488. https://doi.org/10.1016/j.apm.2010.11.066 DOI: https://doi.org/10.1016/j.apm.2010.11.066

Glassman, Irvin and Yetter, R A. “Chapter 8 - Environmental Combustion Considerations,” in Combustion (Fourth Edition), Fourth Edi., I. Glassman and R. A. Yetter, Eds. Burlington: Academic Press, 2008, pp. 409–494. https://doi.org/10.1016/B978-0-12-088573-2.00008-7 DOI: https://doi.org/10.1016/B978-0-12-088573-2.00008-7

Williams, A. "A review of NO x formation and reduction mechanisms in combustion systems, with particular reference to coal." In Fuel and Energy Abstracts, vol. 6, no. 38, p. 425. 1997. https://doi.org/10.1016/s0140-6701(98)96745-5 DOI: https://doi.org/10.1016/S0140-6701(97)82186-8

Kumar, Ravindra, and K. M. Pandey. "CFD analysis of circulating fluidized bed combustion." Engineering Science and Technology 2, no. 1 (2012): 163-174.

Darmawan, Arif, Dwika Budianto, Muhammad Aziz, and Koji Tokimatsu. "Cofiring assessment of hydrothermally-treated empty fruit bunch and low rank coal in a drop tube furnace." Energy Procedia 105 (2017): 1545-1550. https://doi.org/10.1016/j.egypro.2017.03.473 DOI: https://doi.org/10.1016/j.egypro.2017.03.473

Glushkov, D. O., G. S. Nyashina, R. Anand, and P. A. Strizhak. "Composition of gas produced from the direct combustion and pyrolysis of biomass." Process Safety and Environmental Protection 156 (2021): 43-56. https://doi.org/10.1016/j.psep.2021.09.039 DOI: https://doi.org/10.1016/j.psep.2021.09.039

Tumuluru, Jaya Shankar, J. Richard Hess, Richard D. Boardman, Christopher T. Wright, and Tyler L. Westover. "Formulation, pretreatment, and densification options to improve biomass specifications for co-firing high percentages with coal." Industrial biotechnology 8, no. 3 (2012): 113-132. https://doi.org/10.1089/ind.2012.0004 DOI: https://doi.org/10.1089/ind.2012.0004

Wu, Ruochen, Jacob Beutler, and Larry L. Baxter. "Biomass char gasification kinetic rates compared to data, including ash effects." Energy 266 (2023): 126392. https://doi.org/10.1016/j.energy.2022.126392 DOI: https://doi.org/10.1016/j.energy.2022.126392

Choo, Hyunwook, Jongmuk Won, and Susan E. Burns. "Thermal conductivity of dry fly ashes with various carbon and biomass contents." Waste Management 135 (2021): 122-129. https://doi.org/10.1016/j.wasman.2021.08.033 DOI: https://doi.org/10.1016/j.wasman.2021.08.033

Pérez-Jeldres, Rubén, Pablo Cornejo, Mauricio Flores, Alfredo Gordon, and Ximena García. "A modeling approach to co-firing biomass/coal blends in pulverized coal utility boilers: Synergistic effects and emissions profiles." Energy 120 (2017): 663-674. https://doi.org/10.1016/j.energy.2016.11.116 DOI: https://doi.org/10.1016/j.energy.2016.11.116

Trinh, Viet Thieu, Tae-Yong Jeong, Byoung-Hwa Lee, and Chung-Hwan Jeon. "Comparative study of the synergistic effects of blending raw/torrefied biomass and Vietnamese anthracite using co-pyrolysis." ACS omega 6, no. 43 (2021): 29171-29183. https://doi.org/10.1021/acsomega.1c04610 DOI: https://doi.org/10.1021/acsomega.1c04610

Paiman, M. E. S., Nurul S. Hamzah, Siti S. Idris, Norazah A. Rahman, and K. Ismail. "Synergistic effect of co-utilization of coal and biomass char: An Overview." In IOP Conference Series: Materials Science and Engineering, vol. 358, no. 1, p. 012003. IOP Publishing, 2018. https://doi.org/10.1088/1757-899X/358/1/012003 DOI: https://doi.org/10.1088/1757-899X/358/1/012003

Variny, Miroslav, Augustín Varga, Miroslav Rimár, Ján Janošovský, Ján Kizek, Ladislav Lukáč, Gustáv Jablonský, and Otto Mierka. "Advances in biomass co-combustion with fossil fuels in the European context: A review." Processes 9, no. 1 (2021): 100. https://doi.org/10.3390/pr9010100 DOI: https://doi.org/10.3390/pr9010100

Matveeva, A. G., Yu F. Patrakov, A. I. Sechin, P. E. Plyusnin, A. V. Kuznetsov, E. M. Podgorbunskikh, V. A. Bukhtoyarov, A. L. Bychkov, I. O. Lomovsky, and O. I. Lomovsky. "Co-milling as a synergy factor for co-firing. A case study of wood/coal blends." Carbon Resources Conversion 6, no. 1 (2023): 51-57. https://doi.org/10.1016/j.crcon.2022.11.001 DOI: https://doi.org/10.1016/j.crcon.2022.11.001

Zhao, Huiling, Zongqing Bai, Zhenxing Guo, Lingxue Kong, Wei Yuchi, Huaizhu Li, Jin Bai, and Wen Li. "In situ study of the decomposition of pyrite in coal during hydropyrolysis." Journal of Analytical and Applied Pyrolysis 154 (2021): 105024. https://doi.org/10.1016/j.jaap.2021.105024 DOI: https://doi.org/10.1016/j.jaap.2021.105024

Koppejan, Jaap, and Sjaak Van Loo. The handbook of biomass combustion and co-firing. Routledge, 2012. https://doi.org/10.4324/9781849773041 DOI: https://doi.org/10.4324/9781849773041

Bridgwater, Anthony V. "Review of fast pyrolysis of biomass and product upgrading." Biomass and bioenergy 38 (2012): 68-94. https://doi.org/10.1016/j.biombioe.2011.01.048 DOI: https://doi.org/10.1016/j.biombioe.2011.01.048

Mahanta, B., A. Saikia, U. N. Gupta, P. Saikia, B. K. Saikia, J. Jayaramudu, P. S. Sellamuthu, and E. R. Sadiku. "Study of low-rank high sulfur coal fine with biomass." Current Research in Green and Sustainable Chemistry 3 (2020): 100023. https://doi.org/10.1016/j.crgsc.2020.100023 DOI: https://doi.org/10.1016/j.crgsc.2020.100023

Han, Kuihua, Jie Gao, and Jianhui Qi. "The study of sulphur retention characteristics of biomass briquettes during combustion." Energy 186 (2019): 115788. https://doi.org/10.1016/j.energy.2019.07.118 DOI: https://doi.org/10.1016/j.energy.2019.07.118

Rao, Anas, Yongzhen Liu, and Fanhua Ma. "Study of NOx emission for hydrogen enriched compressed natural along with exhaust gas recirculation in spark ignition engine by Zeldovich’mechanism, support vector machine and regression correlation." Fuel 318 (2022): 123577. https://doi.org/10.1016/j.fuel.2022.123577 DOI: https://doi.org/10.1016/j.fuel.2022.123577

Rao, Anas, Yongzhen Liu, and Fanhua Ma. "Numerical simulation of nitric oxide (NO) emission for HCNG fueled SI engine by Zeldovich’, prompt (HCN) and nitrous oxide (N2O) mechanisms along with the error reduction novel sub-models and their classification through machine learning algorithms." Fuel 333 (2023): 126320. https://doi.org/10.1016/j.fuel.2022.126320 DOI: https://doi.org/10.1016/j.fuel.2022.126320

Akbari, Shahin, Moein Farmahini Farahani, Sadegh Sadeghi, Masoud Hajivand, Fei Xu, Ehsan Mohtarami, and Mehdi Bidabadi. "Pulsating diffusion flames fed with biomass particles in counter-flow arrangement: Zeldovich and Lewis numbers effects." Sustainable Energy Technologies and Assessments 46 (2021): 101263. https://doi.org/10.1016/j.seta.2021.101263 DOI: https://doi.org/10.1016/j.seta.2021.101263

Normann, Fredrik, Klas Andersson, Bo Leckner, and Filip Johnsson. "High-temperature reduction of nitrogen oxides in oxy-fuel combustion." Fuel 87, no. 17-18 (2008): 3579-3585. https://doi.org/10.1016/j.fuel.2008.06.013 DOI: https://doi.org/10.1016/j.fuel.2008.06.013

Qian, F. P., Chien-Song Chyang, K. S. Huang, and Jim Tso. "Combustion and NO emission of high nitrogen content biomass in a pilot-scale vortexing fluidized bed combustor." Bioresource Technology 102, no. 2 (2011): 1892-1898. https://doi.org/10.1016/j.biortech.2010.08.008 DOI: https://doi.org/10.1016/j.biortech.2010.08.008

Zhao, Nan, Bowen Li, Riaz Ahmad, Fan Ding, Yuguang Zhou, Gang Li, Ali Mohammed Ibrahim Zayan, and Renjie Dong. "Dynamic relationships between real-time fuel moisture content and combustion-emission-performance characteristics of wood pellets in a top-lit updraft cookstove." Case Studies in Thermal Engineering 28 (2021): 101484. https://doi.org/10.1016/j.csite.2021.101484 DOI: https://doi.org/10.1016/j.csite.2021.101484

The Ministry of Environment and Forestry Indonesia, PERATURAN MENTERI LINGKUNGAN HIDUP DAN KEHUTANAN REPUBLIK INDONESIA P.15/MENLHK/SETJEN/KUM.1/4/2019. Indonesia: The Ministry of Environment and Forestry Indonesia, 2019, p. 56.

Yang, Bo, Yi-Ming Wei, Lan-Cui Liu, Yun-Bing Hou, Kun Zhang, Lai Yang, and Ye Feng. "Life cycle cost assessment of biomass co-firing power plants with CO2 capture and storage considering multiple incentives." Energy Economics 96 (2021): 105173. https://doi.org/10.1016/j.eneco.2021.105173 DOI: https://doi.org/10.1016/j.eneco.2021.105173

Yang, Bo, Yi-Ming Wei, Yunbing Hou, Hui Li, and Pengtao Wang. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage." Applied Energy 252 (2019): 113483. https://doi.org/10.1016/j.apenergy.2019.113483 DOI: https://doi.org/10.1016/j.apenergy.2019.113483

Published

2024-10-31

How to Cite

Nuryadi, A., Helios, M. P. ., Chairunnisa, C., Fitrianto, F., Pujowidodo, H. ., Sutriyanto, H. ., Maswan, A. ., Prasetyo, B. T. ., Sumarah, K. P. ., Uttariyani, I. ., Soewono, R. T. ., & Andini, A. . (2024). Computational Prediction of Co-firing with Various Biomass Waste Using Turbulent Non-Premixed Combustion. CFD Letters, 17(4), 89–106. https://doi.org/10.37934/cfdl.17.4.89106

Issue

Section

Articles