Simulation Approach of Photovoltaic Thermal Based on Water Collector with Rectangular Model

Authors

  • Muhammad Zohri Department of Physics Education, Universitas Islam Negeri Mataram, Mataram 83116, Indonesia
  • Prabowo Department of Mechanical Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111, Indonesia
  • Suwarno Department of Mechanical Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111, Indonesia
  • Ahmad Fudholi Solar Energy Research Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
  • Sena Abraham Irsyad Center for Energy Conversion and Conservation, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
  • Ajeng Tri Rahayu Center for Energy Conversion and Conservation, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
  • Yadi Radiansah Center for Energy Conversion and Conservation, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
  • Dalmasius Ganjar Subagio Center for Energy Conversion and Conservation, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
  • Yusuf Suryo Utomo Center for Energy Conversion and Conservation, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
  • Aep Saepudin Center for Energy Conversion and Conservation, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia

DOI:

https://doi.org/10.37934/cfdl.16.8.121137

Keywords:

Photovoltaic Thermal, Collector, Rectangular, Efficiency, Thermal

Abstract

The advancement of PVT technology in the contemporary era is experiencing an upward trend. This phenomenon can be attributed to the growing societal demand for energy, particularly renewable energy derived from solar sources. The present study investigates the rectangular configuration of a water-based heat absorber within a photovoltaic-thermal (PVT) system. The rectangular model PVT system was simulated using nine different mass flow rate of water variations within the rectangular model channel. The dataset has nine mass flow rate of water variants ranging from 0.001 kg/s to 0.009 kg/s, as well as six solar radiation variations: 500 W/m2, 600 W/m2, 700 W/m2, 800 W/m2, 900 W/m2, and 1000 W/m2. The maximum average outlet temperature achieved under 1000 W/m2 solar radiation is 50.53%, given a 0.001 kg/s fluid mass flow rate. The maximum average photovoltaic (PV) efficiency is 11.93% when exposed to 500 W/m2 solar radiation intensity. The maximum average photovoltaic-thermal (PVT) efficiency is 76.23% when exposed to 500 W/m2 solar radiation intensity. Therefore, utilizing rectangular collectors in water-based photovoltaic-thermal systems potentially substantially enhanced the average thermal efficiency and overall PVT efficiency. Consequently, it is advisable to consider incorporating rectangular collectors in the future improvements of PVT technology.

Downloads

Download data is not yet available.

Author Biographies

Muhammad Zohri, Department of Physics Education, Universitas Islam Negeri Mataram, Mataram 83116, Indonesia

zohri.ukm@gmail.com

Prabowo, Department of Mechanical Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111, Indonesia

prabowo@me.its.ac.id

Suwarno, Department of Mechanical Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111, Indonesia

suwarno@me.its.ac.id

Ahmad Fudholi, Solar Energy Research Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia

a.fudholi@gmail.com

Sena Abraham Irsyad, Center for Energy Conversion and Conservation, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia

irsyadabrahamsena@gmail.com

Ajeng Tri Rahayu, Center for Energy Conversion and Conservation, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia

ajengr42@gmail.com

Yadi Radiansah, Center for Energy Conversion and Conservation, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia

yadi003@brin.go.id

Dalmasius Ganjar Subagio, Center for Energy Conversion and Conservation, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia

dalmasius@yahoo.com

Yusuf Suryo Utomo, Center for Energy Conversion and Conservation, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia

yusu004@brin.go.id

Aep Saepudin, Center for Energy Conversion and Conservation, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia

aep002@brin.go.id

References

Siavashi, Majid, Mehdi Vahabzadeh Bozorg, and Mohammad Hesam Toosi. "A numerical analysis of the effects of nanofluid and porous media utilization on the performance of parabolic trough solar collectors." Sustainable Energy Technologies and Assessments 45 (2021): 101179. https://doi.org/10.1016/j.seta.2021.101179

Asadian, H., A. Mahdavi, T. B. Gorji, and M. Gorji-Bandpy. "Efficiency improvement of non-crystal silicon (amorphous) photovoltaic module in a solar hybrid system with nanofluid." Experimental Techniques 46, no. 4 (2022): 633-645. https://doi.org/10.1007/s40799-021-00498-6

Khelifa, A., K. Touafek, H. Ben Moussa, I. Tabet, and H. Haloui. "Analysis of a hybrid solar collector photovoltaic thermal (PVT)." Energy Procedia 74 (2015): 835-843. https://doi.org/10.1016/j.egypro.2015.07.819

Rosli, M. A. M., S. Mat, K. Sopian, E. Salleh, and M. K. A. Sharif. "Experimental development to determine time constant for polymer collector." ARPN Journal of Engineering and Applied Sciences 13 (2006): 1523-1527.

Abdullah, Ahmed L., Suhaimi Misha, Noreffendy Tamaldin, M. A. M. Rosli, and F. A. Sachit. "Photovoltaic thermal/solar (PVT) collector (PVT) system based on fluid absorber design: A review." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 48, no. 2 (2018): 196-208.

Omri, Mohamed, Fatih Selimefendigil, Hichem T. Smaoui, and Lioua Kolsi. "Cooling system design for photovoltaic thermal management by using multiple porous deflectors and nanofluid." Case Studies in Thermal Engineering 39 (2022): 102405. https://doi.org/10.1016/j.csite.2022.102405

Salman, Abdul Hakeem A., Kifah H. Hilal, and Safaa A. Ghadhban. "Enhancing performance of PV module using water flow through porous media." Case Studies in Thermal Engineering 34 (2022): 102000. https://doi.org/10.1016/j.csite.2022.102000

Masalha, I., S. U. Masuri, O. O. Badran, M. K. A. M. Ariffin, AR Abu Talib, and F. Alfaqs. "Outdoor experimental and numerical simulation of photovoltaic cooling using porous media." Case Studies in Thermal Engineering 42 (2023): 102748. https://doi.org/10.1016/j.csite.2023.102748

Kim, Jin-Hee, and Jun-Tae Kim. "Comparison of electrical and thermal performances of glazed and unglazed PVT collectors." International Journal of Photoenergy 2012 (2012). https://doi.org/10.1155/2012/957847

Rosli, M. A. M., S. Mat, H. Ruslan, K. Sopian, and Hang Tuah Jaya. "Parametric study on water based photovoltaic thermal collector." In 7th international conference on renewable energy sources (RES’13), pp. 135-140. 2013.

Ji, Jie, Jian-Ping Lu, Tin-Tai Chow, Wei He, and Gang Pei. "A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation." Applied Energy 84, no. 2 (2007): 222-237. https://doi.org/10.1016/j.apenergy.2006.04.009

Senthil Kumar, R., N. Puja Priyadharshini, and Elumalai Natarajan. "Experimental and computational fluid dynamics (CFD) study of glazed three dimensional PV/T Solar panel with air cooling." Applied Mechanics and Materials 787 (2015): 102-106. https://doi.org/10.4028/www.scientific.net/AMM.787.102

Khan, Firoz, S. N. Singh, and M. Husain. "Effect of illumination intensity on cell parameters of a silicon solar cell." Solar energy materials and solar cells 94, no. 9 (2010): 1473-1476. https://doi.org/10.1016/j.solmat.2010.03.018

Sardouei, Masoud Mohammadi, Hamid Mortezapour, and K. A. Z. E. M. JAFARI NAEIMI. "Temperature distribution and efficiency assessment of different PVT water collector designs." Sādhanā 43 (2018): 1-13. https://doi.org/10.1007/s12046-018-0826-x

Yu, Ji-Suk, Jin-Hee Kim, and Jun-Tae Kim. "Effect of triangular baffle arrangement on heat transfer enhancement of air-type PVT collector." Sustainability 12, no. 18 (2020): 7469. https://doi.org/10.3390/SU12187469

Misha, Simulation, Amira Lateef Abdullah, N. Tamaldin, M. A. M. Rosli, and F. A. Sachit. "Simulation CFD and experimental investigation of PVT water system under natural Malaysian weather conditions." Energy Reports 6 (2020): 28-44. https://doi.org/10.1016/j.egyr.2019.11.162

Ping, Yap Joon, Mohd Afzanizam Mohd Rosli, Suhaimi Misha, Mohd Zaid Akop, Kamaruzzaman Sopian, Sohif Mat, Ali Najah Al-Shamani, and Muhammad Asraf Saruni. "Simulation study of computational fluid dynamics on photovoltaic thermal water collector with different designs of absorber tube." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 52, no. 1 (2018): 12-22.

Herrando, María, Alba Ramos, Ignacio Zabalza, and Christos N. Markides. "A comprehensive assessment of alternative absorber-exchanger designs for hybrid PVT-water collectors." Applied energy 235 (2019): 1583-1602. https://doi.org/10.1016/j.apenergy.2018.11.024

Arifin, Zainal, Singgih Dwi Prasetyo, Aditya Rio Prabowo, Dominicus Danardono Dwi Prija Tjahjana, and Rendy Adhi Rachmanto. "Effect of thermal collector configuration on the photovoltaic heat transfer performance with 3D CFD modeling." Open Engineering 11, no. 1 (2021): 1076-1085. https://doi.org/10.1515/eng-2021-0107

kumar Goel, Abhishek, S. N. Singh, and B. N. Prasad. "Experimental investigation of thermo-hydraulic efficiency and performance characteristics of an impinging jet-finned type solar air heater." Sustainable Energy Technologies and Assessments 52 (2022): 102165. https://doi.org/10.1016/j.seta.2022.102165

Singh, Satyender. "Experimental and numerical investigations of a single and double pass porous serpentine wavy wiremesh packed bed solar air heater." Renewable Energy 145 (2020): 1361-1387. https://doi.org/10.1016/j.renene.2019.06.137

Eisapour, Amir Hossein, M. Eisapour, M. J. Hosseini, A. H. Shafaghat, P. Talebizadeh Sardari, and A. A. Ranjbar. "Toward a highly efficient photovoltaic thermal module: Energy and exergy analysis." Renewable Energy 169 (2021): 1351-1372. https://doi.org/10.1016/j.renene.2021.01.110

Eisapour, M., Amir Hossein Eisapour, M. J. Hosseini, and P. Talebizadehsardari. "Exergy and energy analysis of wavy tubes photovoltaic-thermal systems using microencapsulated PCM nano-slurry coolant fluid." Applied Energy 266 (2020): 114849. https://doi.org/10.1016/j.apenergy.2020.114849

Ma, Tao, Meng Li, and Arash Kazemian. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously." Applied Energy 261 (2020): 114380. https://doi.org/10.1016/j.apenergy.2019.114380

Salari, Ali, Arash Kazemian, Tao Ma, Ali Hakkaki-Fard, and Jinqing Peng. "Nanofluid based photovoltaic thermal systems integrated with phase change materials: Numerical simulation and thermodynamic analysis." Energy Conversion and Management 205 (2020): 112384. https://doi.org/10.1016/j.enconman.2019.112384

Kolahan, Arman, Seyed Reza Maadi, Arash Kazemian, Corrado Schenone, and Tao Ma. "Semi-3D transient simulation of a nanofluid-base photovoltaic thermal system integrated with a thermoelectric generator." Energy Conversion and Management 220 (2020): 113073. https://doi.org/10.1016/j.enconman.2020.113073

Kazemian, Arash, Ali Parcheforosh, Ali Salari, and Tao Ma. "Optimization of a novel photovoltaic thermal module in series with a solar collector using Taguchi based grey relational analysis." Solar Energy 215 (2021): 492-507. https://doi.org/10.1016/j.solener.2021.01.006

Baranwal, Naimish Kumar, and Mukesh Kumar Singhal. "Modeling and simulation of a spiral type hybrid photovoltaic thermal (PV/T) water collector using ANSYS." In Advances in Clean Energy Technologies: Select Proceedings of ICET 2020, pp. 127-139. Springer Singapore, 2021. https://doi.org/10.1007/978-981-16-0235-1_10

Popovici, Cătălin George, Sebastian Valeriu Hudişteanu, Theodor Dorin Mateescu, and Nelu-Cristian Cherecheş. "Efficiency improvement of photovoltaic panels by using air cooled heat sinks." Energy procedia 85 (2016): 425-432. https://doi.org/10.1016/j.egypro.2015.12.223

Baranwal, Naimish Kumar, and Mukesh Kumar Singhal. "Modeling and simulation of a spiral type hybrid photovoltaic thermal (PV/T) water collector using ANSYS." In Advances in Clean Energy Technologies: Select Proceedings of ICET 2020, pp. 127-139. Springer Singapore, 2021. https://doi.org/10.1007/978-981-16-0235-1_10

Khelifa, A., K. Touafek, H. Ben Moussa, and I. Tabet. "Modeling and detailed study of hybrid photovoltaic thermal (PV/T) solar collector." Solar Energy 135 (2016): 169-176. https://doi.org/10.1016/j.solener.2016.05.048

Fudholi, Ahmad, Kamaruzzaman Sopian, Mohd Hafidz Ruslan, and Mohd Yusof Othman. "Performance and cost benefits analysis of double-pass solar collector with and without fins." Energy conversion and management 76 (2013): 8-19. https://doi.org/10.1016/j.enconman.2013.07.015

Jaaz, Ahed Hameed, Kamaruzzaman Sopian, and Tayser Sumer Gaaz. "Study of the electrical and thermal performances of photovoltaic thermal collector-compound parabolic concentrated." Results in Physics 9 (2018): 500-510. https://doi.org/10.1016/j.rinp.2018.03.004

Matheswaran, M. M., T. V. Arjunan, and D. Somasundaram. "Analytical investigation of solar air heater with jet impingement using energy and exergy analysis." Solar Energy 161 (2018): 25-37. https://doi.org/10.1016/j.solener.2017.12.036

Abd Elbar, Ayman Refat, and Hamdy Hassan. "Energy, exergy and environmental assessment of solar still with solar panel enhanced by porous material and saline water preheating." Journal of Cleaner Production 277 (2020): 124175. https://doi.org/10.1016/j.jclepro.2020.124175

Ewe, Win Eng, Ahmad Fudholi, Kamaruzzaman Sopian, Refat Moshery, Nilofar Asim, Wahidin Nuriana, and Adnan Ibrahim. "Thermo-electro-hydraulic analysis of jet impingement bifacial photovoltaic thermal (JIBPVT) solar air collector." Energy 254 (2022): 124366. https://doi.org/10.1016/j.energy.2022.124366

Nazri, Nurul Syakirah, Ahmad Fudholi, Bardia Bakhtyar, Chan Hoy Yen, Adnan Ibrahim, Mohd Hafidz Ruslan, Sohif Mat, and Kamaruzzaman Sopian. "Energy economic analysis of photovoltaic–thermal-thermoelectric (PVT-TE) air collectors." Renewable and Sustainable Energy Reviews 92 (2018): 187-197. https://doi.org/10.1016/j.rser.2018.04.061

Fudholi, Ahmad, Nur Farhana Mohd Razali, Mohammad H. Yazdi, Adnan Ibrahim, Mohd Hafidz Ruslan, Mohd Yusof Othman, and Kamaruzzaman Sopian. "TiO2/water-based photovoltaic thermal (PVT) collector: Novel theoretical approach." Energy 183 (2019): 305-314. https://doi.org/10.1016/j.energy.2019.06.143

Mishra, R. K., and G. N. Tiwari. "Energy and exergy analysis of hybrid photovoltaic thermal water collector for constant collection temperature mode." Solar energy 90 (2013): 58-67. https://doi.org/10.1016/j.solener.2012.12.022

Khelifa, A., K. Touafek, H. Ben Moussa, I. Tabet, and H. Haloui. "Analysis of a hybrid solar collector photovoltaic thermal (PVT)." Energy Procedia 74 (2015): 835-843. https://doi.org/10.1016/j.egypro.2015.07.819

Kadhim, Ali Najah, MOHAMMAD H. Yazdi, AZHER M. Abed, M. H. Ruslan, and K. Sopian. "Study on the performance of photovoltaic thermal collector (PV/T) with rectangular tube absorber design." Computer Applications in Environmental Sciences and Renewable Energy (2014).

Hussain, F., M. Y. H. Othman, Kamaruzzaman Sopian, Baharudin Yatim, H. Ruslan, and H. Othman. "Design development and performance evaluation of photovoltaic/thermal (PV/T) air base solar collector." Renewable and Sustainable Energy Reviews 25 (2013): 431-441. https://doi.org/10.1016/j.rser.2013.04.014

Aste, Niccolò, Claudio Del Pero, Fabrizio Leonforte, and Massimiliano Manfren. "Performance monitoring and modeling of an uncovered photovoltaic-thermal (PVT) water collector." Solar Energy 135 (2016): 551-568. https://doi.org/10.1016/j.solener.2016.06.029

Aste, Niccolò, Fabrizio Leonforte, and Claudio Del Pero. "Design, modeling and performance monitoring of a photovoltaic–thermal (PVT) water collector." Solar Energy 112 (2015): 85-99. https://doi.org/10.1016/j.solener.2014.11.025

Published

2024-03-31

Issue

Section

Articles