Contribution of Soret and Dufour Aspects on Hybrid Nanofluid over 3D Magneto Radiative Stretching Surface with Chemical Reaction
DOI:
https://doi.org/10.37934/cfdl.17.5.131151Keywords:
HNF, Rotating, Stretching sheet, bvp5c,, Magneticfield, Soret and Dufour EffectsAbstract
This study analyzes Soret and Dufour impacts on 3-dimensional, rotating HNF (CuO-Ag/Water) flow over a linearly stretchable surface that contains a mixture of Ag and CuO nanoparticles with H2O acting as the base fluid. Flow of governing PDEs is transformed into a system of ODEs, by using the bvp5c approach. Analysis and graphical presentation were made of the effect of the parameters included. The present study reveals that the Soret factor affects the surface's thermal efficiency whereas the Dufour impact lessens the surface mass transfer. The present work 99.9% compatible with previous work for stretching sheet parameter values are 0, 0.1, 0.2, 0.3, 0.4, 0.5. This conclusion may be employed in a variety of nanofluid cooling systems. This study may be used to inform future numerical and experimental studies.
Downloads
References
Babar, Hamza, and Hafiz Muhammad Ali. "Towards hybrid nanofluids: preparation, thermophysical properties, applications, and challenges." Journal of Molecular Liquids 281 (2019): 598-633. https://doi.org/10.1016/j.molliq.2019.02.102 DOI: https://doi.org/10.1016/j.molliq.2019.02.102
Suresh, S., K. P. Venkitaraj, P. Selvakumar, and M. Chandrasekar. "Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties." Colloids and Surfaces A: Physicochemical and Engineering Aspects 388, no. 1-3 (2011): 41-48. https://doi.org/10.1016/j.colsurfa.2011.08.005 DOI: https://doi.org/10.1016/j.colsurfa.2011.08.005
Momin, Gaffar G. "Experimental investigation of mixed convection with water-Al2O3 & hybrid nanofluid in inclined tube for laminar flow." Int. J. Sci. Technol. Res 2, no. 12 (2013): 195-202.
Suresh, S., K. P. Venkitaraj, and P. Selvakumar. "Synthesis, characterisation of Al2O3-Cu nano composite powder and water based nanofluids." Advanced Materials Research 328 (2011): 1560-1567. https://doi.org/10.4028/www.scientific.net/AMR.328-330.1560 DOI: https://doi.org/10.4028/www.scientific.net/AMR.328-330.1560
Suresh, S., K. P. Venkitaraj, M. Shahul Hameed, and J. Sarangan. "Turbulent heat transfer and pressure drop characteristics of dilute water based Al2O3–Cu hybrid nanofluids." Journal of nanoscience and nanotechnology 14, no. 3 (2014): 2563-2572. https://doi.org/10.1166/jnn.2014.8467 DOI: https://doi.org/10.1166/jnn.2014.8467
Madhesh, Devasenan, Rajagopalan Parameshwaran, and Siva Kalaiselvam. "Experimental investigation on convective heat transfer and rheological characteristics of Cu–TiO2 hybrid nanofluids." Experimental Thermal and Fluid Science 52 (2014): 104-115. https://doi.org/10.1016/j.expthermflusci.2013.08.026 DOI: https://doi.org/10.1016/j.expthermflusci.2013.08.026
Arshad, Mubashar, Hanen Karamti, Jan Awrejcewicz, Dariusz Grzelczyk, and Ahmed M. Galal. "Thermal transmission comparison of nanofluids over stretching surface under the influence of magnetic field." Micromachines 13, no. 8 (2022): 1296. https://doi.org/10.3390/mi13081296 DOI: https://doi.org/10.3390/mi13081296
Madhesh, D., and S. Kalaiselvam. "Experimental analysis of hybrid nanofluid as a coolant." Procedia engineering 97 (2014): 1667-1675. https://doi.org/10.1016/j.proeng.2014.12.317 DOI: https://doi.org/10.1016/j.proeng.2014.12.317
Alam, Mohammad Mahtab, Mubashar Arshad, Fahad M. Alharbi, Ali Hassan, Qusain Haider, Laila A. Al-Essa, Sayed M. Eldin, Abdulkafi Mohammed Saeed, and Ahmed M. Galal. "Comparative dynamics of mixed convection heat transfer under thermal radiation effect with porous medium flow over dual stretched surface." Scientific Reports 13, no. 1 (2023): 12827. https://doi.org/10.1038/s41598-023-40040-9 DOI: https://doi.org/10.1038/s41598-023-40040-9
Hayat, Tanzila, and S. Nadeem. "Heat transfer enhancement with Ag–CuO/water hybrid nanofluid." Results in physics 7 (2017): 2317-2324. https://doi.org/10.1016/j.rinp.2017.06.034 DOI: https://doi.org/10.1016/j.rinp.2017.06.034
Sidik, Nor Azwadi Che, Isa Muhammad Adamu, Muhammad Mahmud Jamil, G. H. R. Kefayati, Rizalman Mamat, and G. Najafi. "Recent progress on hybrid nanofluids in heat transfer applications: a comprehensive review." International communications in heat and mass Transfer 78 (2016): 68-79. https://doi.org/10.1016/j.icheatmasstransfer.2016.08.019 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2016.08.019
Arshad, Mubashar, Azad Hussain, Ali Hassan, Syed Amir Ghazi Ali Shah, Mohamed Abdelghany Elkotab, Soumaya Gouadria, Mishal Alsehli, and Ahmed M. Galal. "Heat and mass transfer analysis above an unsteady infinite porous surface with chemical reaction." Case Studies in Thermal Engineering 36 (2022): 102140. https://doi.org/10.1016/j.csite.2022.102140 DOI: https://doi.org/10.1016/j.csite.2022.102140
Arshad, Mubashar, Azad Hussain, Ashraf Elfasakhany, Soumaya Gouadria, Jan Awrejcewicz, Witold Pawłowski, Mohamed Abdelghany Elkotb, and Fahad M. Alharbi. "Magneto-hydrodynamic flow above exponentially stretchable surface with chemical reaction." Symmetry 14, no. 8 (2022): 1688. https://doi.org/10.3390/sym14081688 DOI: https://doi.org/10.3390/sym14081688
Anuar, Nur Syazana, Norfifah Bachok, and Ioan Pop. "Radiative hybrid nanofluid flow past a rotating permeable stretching/shrinking sheet." International Journal of Numerical Methods for Heat & Fluid Flow 31, no. 3 (2021): 914-932. https://doi.org/10.1108/HFF-03-2020-0149 DOI: https://doi.org/10.1108/HFF-03-2020-0149
Venkateswarlu, Bhumavarapu, and Panyam Venkata Satya Narayana. "Cu‐Al2O3/H2O hybrid nanofluid flow past a porous stretching sheet due to temperatue‐dependent viscosity and viscous dissipation." Heat Transfer 50, no. 1 (2021): 432-449. https://doi.org/10.1002/htj.21884
Lund, Liaquat Ali, Zurni Omar, and Ilyas Khan. "Darcy-Forchheimer porous medium effect on rotating hybrid nanofluid on a linear shrinking/stretching sheet." International Journal of Numerical Methods for Heat & Fluid Flow 31, no. 12 (2021): 3621-3641. https://doi.org/10.1108/HFF-11-2020-0716 DOI: https://doi.org/10.1108/HFF-11-2020-0716
Hayat, Tanzila, S. Nadeem, and A. U. Khan. "Numerical analysis of Ag–CuO/water rotating hybrid nanofluid with heat generation and absorption." Canadian Journal of Physics 97, no. 6 (2019): 644-650. https://doi.org/10.1139/cjp-2018-0011 DOI: https://doi.org/10.1139/cjp-2018-0011
Irfan, M., M. Khan, and W. A. Khan. "Heat sink/source and chemical reaction in stagnation point flow of Maxwell nanofluid." Applied Physics A 126 (2020): 1-8. Hafeez, Muhammad Bilal, Wojciech Sumelka, Umar Nazir, Hijaz Ahmad, and Sameh Askar. "Mechanism of solute and thermal characteristics in a Casson hybrid nanofluid based with ethylene glycol influenced by Soret and Dufour effects." Energies 14, no. 20 (2021): 6818. https://doi.org/10.1007/s00339-020-04051-x
Asghar, Adnan, Liaquat Ali Lund, Zahir Shah, Narcisa Vrinceanu, Wejdan Deebani, and Meshal Shutaywi. "Effect of thermal radiation on three-dimensional magnetized rotating flow of a hybrid nanofluid." Nanomaterials 12, no. 9 (2022): 1566. https://doi.org/10.3390/nano12091566 DOI: https://doi.org/10.3390/nano12091566
Hafeez, Muhammad Bilal, Wojciech Sumelka, Umar Nazir, Hijaz Ahmad, and Sameh Askar. "Mechanism of solute and thermal characteristics in a Casson hybrid nanofluid based with ethylene glycol influenced by Soret and Dufour effects." Energies 14, no. 20 (2021): 6818. https://doi.org/10.3390/en14206818 DOI: https://doi.org/10.3390/en14206818
Narayanaswamy, Manoj Kumar, Jagan Kandasamy, and Sivasankaran Sivanandam. "Impacts of Stefan Blowing on hybrid nanofluid flow over a stretching cylinder with thermal radiation and Dufour and Soret effect." Mathematical and Computational Applications 27, no. 6 (2022): 91. https://doi.org/10.3390/mca27060091 DOI: https://doi.org/10.3390/mca27060091
Venkateswarlu, Bhumavarapu, and Panyam Venkata Satya Narayana. "Cu‐Al2O3/H2O hybrid nanofluid flow past a porous stretching sheet due to temperatue‐dependent viscosity and viscous dissipation." Heat Transfer 50, no. 1 (2021): 432-449. https://doi.org/10.1002/htj.21884 DOI: https://doi.org/10.1002/htj.21884
Mohd Sohut, Noor Farizza Haniem, Siti Khuzaimah Soid, Sakhinah Abu Bakar, and Anuar Ishak. "Unsteady Three-Dimensional Flow in a Rotating Hybrid Nanofluid over a Stretching Sheet." Mathematics 10, no. 3 (2022): 348. https://doi.org/10.3390/math10030348 DOI: https://doi.org/10.3390/math10030348
Khan, Muhammad Sohail, Sun Mei, Shabnam, Unai Fernandez-Gamiz, Samad Noeiaghdam, Said Anwar Shah, and Aamir Khan. "Numerical analysis of unsteady hybrid nanofluid flow comprising CNTs-ferrousoxide/water with variable magnetic field." Nanomaterials 12, no. 2 (2022): 180. https://doi.org/10.3390/nano12020180 DOI: https://doi.org/10.3390/nano12020180
Farooq, Umar, Madeeha Tahir, Hassan Waqas, Taseer Muhammad, Ahmad Alshehri, and Muhammad Imran. "Investigation of 3D flow of magnetized hybrid nanofluid with heat source/sink over a stretching sheet." Scientific Reports 12, no. 1 (2022): 12254. https://doi.org/10.1038/s41598-022-15658-w DOI: https://doi.org/10.1038/s41598-022-15658-w
Irfan, M., W. A. Khan, Amjad Ali Pasha, Mohammad Irfan Alam, Nazrul Islam, and M. Zubair. "Significance of non-Fourier heat flux on ferromagnetic Powell-Eyring fluid subject to cubic autocatalysis kind of chemical reaction." International Communications in Heat and Mass Transfer 138 (2022): 106374. https://doi.org/10.1016/j.icheatmasstransfer.2022.106374 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2022.106374
Sharma, Ram Prakash, Debasish Gorai, and Kalidas Das. "Comparative study on hybrid nanofluid flow of Ag–CuO/H2O over a curved stretching surface with Soret and Dufour effects." Heat Transfer 51, no. 7 (2022): 6365-6383. https://doi.org/10.1002/htj.22595 DOI: https://doi.org/10.1002/htj.22595
Khashi'ie, Najiyah Safwa, Norihan Md Arifin, Ioan Pop, Roslinda Nazar, Ezad Hafidz Hafidzuddin, and Nadihah Wahi. "Three-dimensional hybrid nanofluid flow and heat transfer past a permeable stretching/shrinking sheet with velocity slip and convective condition." Chinese Journal of Physics 66 (2020): 157-171. https://doi.org/10.1016/j.cjph.2020.03.032 DOI: https://doi.org/10.1016/j.cjph.2020.03.032
Irfan, Muhammad, Muhammad Shoaib Anwar, Imen Kebail, and Waqar Azeem Khan. "Thermal study on the performance of Joule heating and Sour-Dufour influence on nonlinear mixed convection radiative flow of Carreau nanofluid." Tribology International 188 (2023): 108789. https://doi.org/10.1016/j.triboint.2023.108789 DOI: https://doi.org/10.1016/j.triboint.2023.108789
Waini, Iskandar, Anuar Ishak, and Ioan Pop. "Transpiration effects on hybrid nanofluid flow and heat transfer over a stretching/shrinking sheet with uniform shear flow." Alexandria Engineering Journal 59, no. 1 (2020): 91-99. https://doi.org/10.1016/j.aej.2019.12.010 DOI: https://doi.org/10.1016/j.aej.2019.12.010
Mahabaleshwar, U. S., T. Anusha, and M. Hatami. "The MHD Newtonian hybrid nanofluid flow and mass transfer analysis due to super-linear stretching sheet embedded in porous medium." Scientific reports 11, no. 1 (2021): 22518. https://doi.org/10.1038/s41598-021-01902-2 DOI: https://doi.org/10.1038/s41598-021-01902-2
Butt, Adnan Saeed, and Asif Ali. "Investigation of entropy generation effects in magnetohydrodynamic three-dimensional flow and heat transfer of viscous fluid over a stretching surface." Journal of the Brazilian Society of Mechanical Sciences and Engineering 37 (2015): 211-219. https://doi.org/10.1007/s40430-014-0163-x DOI: https://doi.org/10.1007/s40430-014-0163-x
Irfan, Muhammad, Rida Aftab, and Masood Khan. "Thermal performance of Joule heating in Oldroyd-B nanomaterials considering thermal-solutal convective conditions." Chinese Journal of Physics 71 (2021): 444-457. https://doi.org/10.1016/j.cjph.2021.03.010 DOI: https://doi.org/10.1016/j.cjph.2021.03.010
Hassan, Ali, Azad Hussain, Mubashar Arshad, Jan Awrejcewicz, Witold Pawlowski, Fahad M. Alharbi, and Hanen Karamti. "Heat and mass transport analysis of MHD rotating hybrid nanofluids conveying silver and molybdenum di-sulfide nano-particles under effect of linear and non-linear radiation." Energies 15, no. 17 (2022): 6269. https://doi.org/10.3390/en15176269 DOI: https://doi.org/10.3390/en15176269
Arshad, Mubashar, Ali Hassan, Qusain Haider, Fahad M. Alharbi, Najah Alsubaie, Abdullah Alhushaybari, Diana-Petronela Burduhos-Nergis, and Ahmed M. Galal. "Rotating hybrid nanofluid flow with chemical reaction and thermal radiation between parallel plates." Nanomaterials 12, no. 23 (2022): 4177. https://doi.org/10.3390/nano12234177 DOI: https://doi.org/10.3390/nano12234177
Zin, Nor Athirah Mohd, Siti Nur Alwani Salleh, Ahmad Qushairi Mohamad, Mohd Rijal Ilias, and Ilyas Khan. "Heat Transfer in Hartmann Flow of Hybrid Nano-Jeffrey Fluid with Heat Absorption and Thermal Radiation Impact." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 112, no. 1 (2023): 38-61. https://doi.org/10.37934/arfmts.112.1.3861 DOI: https://doi.org/10.37934/arfmts.112.1.3861
Arshad, M., Alharbi, F.M., Hassan, A. et al., Effect of inclined magnetic field on radiative heat and mass transfer in chemically reactive hybrid nanofluid flow due to dual stretching. Sci Rep 13, 7828 (2023). https://doi.org/10.1038/s41598-023-348719 DOI: https://doi.org/10.1038/s41598-023-34871-9
Kansara, Keyur, and V. K. Singh. "Effect of heat source direction on the thermal performance of phase change material (PCM) based thermal control module (TCM) under the influence of low gravity environment.” International Communications in Heat and Mass Transfer 128 (2021): 105615. https://doi.org/10.1016/j.icheatmasstransfer.2021.105615 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2021.105615
Rafiq, K., M. Irfan, M. Khan, M. S. Anwar, and W. A. Khan. "Arrhenius activation energy theory in radiative flow of Maxwell nanofluid." Physica Scripta 96, no. 4 (2021): 045002. DOI: https://doi.org/10.1088/1402-4896/abd903
Kumar, David, Bhagya Swetha Latha Kolapati, and Rajasekhar Kandi. "Effects of Hall Current and Activation Energy on a Three-Dimensional Rotating Casson Hybrid Nanofluid Flow over a Stretched Plate in the Presence of Joule Heating and Nonlinear Thermal Radiation." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 109, no. 1 (2023): 51-70. https://doi.org/10.37934/arfmts.109.1.5170 DOI: https://doi.org/10.37934/arfmts.109.1.5170
Azmi, Nadhira Azreen, Mohd Rijal Ilias, Siti Shuhada Ishak, Roselah Osman, and Abdul Rahman Mohd Kasim. "Maxwell Hybrid Nanofluid Flow Towards a Stagnation Point on a Stretching/Shrinking Inclined Plate with Radiation and Nanoparticles Shapes Effect." Journal of Advanced Research in Numerical Heat Transfer 16, no. 1 (2024): 1-16. https://doi.org/10.37934/arnht.16.1.116
Hashim, Muhamad Hasif Mohd, Norihan Md Arifin, Ahmad Nazri Mohamad Som, Nazihah Mohamed Ali, Aniza Ab Ghani, and Safaa Jawad Ali. "Natural Convection in Trapezoidal Cavity containing Hybrid Nanofluid." Journal of Advanced Research in Micro and Nano Engineering 13, no. 1 (2023): 18-30. https://doi.org/10.37934/armne.13.1.1830 DOI: https://doi.org/10.37934/armne.13.1.1830
Ishak, Siti Shuhada, Nurul Nurfatihah Mazlan, Mohd Rijal Ilias, Roselah Osman, Abdul Rahman Mohd Kasim, and Nurul Farahain Mohammad. "Radiation Effects on Inclined Magnetohydrodynamics Mixed Convection Boundary Layer Flow of Hybrid Nanofluids over a Moving and Static Wedge." Journal of Advanced Research in Applied Sciences and Engineering Technology 28, no. 3 (2022): 68-84. https://doi.org/10.37934/araset.28.3.6884 DOI: https://doi.org/10.37934/araset.28.3.6884
Maheswari, Chundru, Mohana Ramana Ravuri, G. Balaji Prakash, D. Ramesh, and D. Vijaya Kumar. "Influence of Thermophoresis and Brownian Motion on MHD Hybrid Nanofluid MgO-Ag/H2O Flow along Moving Slim Needle." Journal of Advanced Research in Applied Sciences and Engineering Technology 36, no. 2 (2023): 67-90. https://doi.org/10.37934/araset.36.2.6790 DOI: https://doi.org/10.37934/araset.36.2.6790