Meteotsunami Impact in Indonesia Due to the Shockwave of the Hunga Tonga Volcanic Eruption on January 15, 2022
DOI:
https://doi.org/10.37934/cfdl.17.4.136152Keywords:
Meteotsunami, volcanic eruption, shockwave, Proudman resonanceAbstract
This paper presents the impact of a meteotsunami resulting from the shockwave of the underwater volcanic eruption of Hunga Tonga–Hunga Ha'apai (HTHH) on January 15, 2022.The tsunami was detected in various locations in Indonesia through a network of water level sensors monitored by the Meteorology, Climatology, and Geophysics Agency (BMKG). The tsunami wave heights varied significantly and exhibited a non-linear relationship with the distance from the volcano. The heights of detected tsunami ranged from 2.8 to 22.6 cm, with the highest recorded at the water level sensor south of Java Island. The heights of waves are believed influenced by Proudman resonance in the Indian Ocean waters beside the local amplification effect. The average period of the tsunami waves was approximately 40 minutes, exceeding five days. The tsunami was triggered by the coupling effect between the shockwave with a velocity of 312 m/s and the sea surface. The air pressure anomalies due to the shockwave ranging from 1.2 to 2.2 hPa. Throughout Indonesian waters, this meteotsunami phenomenon did not have a significant impact.
Downloads
References
Monserrat, Sebastià, Ivica Vilibić, and Alexander B. Rabinovich. "Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band." Natural hazards and earth system sciences 6, no. 6 (2006): 1035-1051. https://doi.org/10.5194/nhess-6-1035-2006 DOI: https://doi.org/10.5194/nhess-6-1035-2006
Jansa, Agustin, Sebastià Monserrat, and Damià Gomis. "The rissaga of 15 June 2006 in Ciutadella (Menorca), a meteorological tsunami." Advances in Geosciences 12 (2007): 1-4. https://doi.org/10.5194/adgeo-12-1-2007 DOI: https://doi.org/10.5194/adgeo-12-1-2007
Yokoyama, I. "A scenario of the 1883 Krakatau tsunami." Journal of Volcanology and Geothermal Research 34, no. 1-2 (1987): 123-132. https://doi.org/10.1016/0377-0273(87)90097-7 DOI: https://doi.org/10.1016/0377-0273(87)90097-7
Choi, Byung Ho, Efim Pelinovsky, K. O. Kim, and J. S. Lee. "Simulation of the trans-oceanic tsunami propagation due to the 1883 Krakatau volcanic eruption." Natural Hazards and Earth System Sciences 3, no. 5 (2003): 321-332. https://doi.org/10.5194/nhess-3-321-2003 DOI: https://doi.org/10.5194/nhess-3-321-2003
Yamashita, Kei, and Taro Kakinuma. "Interpretation of global tsunami height distribution due to the 2022 Hunga Tonga-Hunga Ha’apai volcanic eruption." (2022). https://doi.org/10.21203/rs.3.rs-1761920/v1 DOI: https://doi.org/10.21203/rs.3.rs-1761920/v1
Narvaez, Liliana, Joerg Szarzynski, and Zita Sebesvari. "Technical Report: Tonga volcano eruption." (2022). http://dx.doi.org/10.53324/YSXA5862 DOI: https://doi.org/10.53324/YSXA5862
Matoza, Robin S., David Fee, Jelle D. Assink, Alexandra M. Iezzi, David N. Green, Keehoon Kim, Liam Toney et al., "Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga." Science 377, no. 6601 (2022): 95-100. https://doi.org/10.1126/science.abo7063 DOI: https://doi.org/10.1126/science.abo7063
Marcos Pivetta, “Atmospheric Science: From Tonga to Sao Paulo,” (2022).
Borrero, Jose C., Shane J. Cronin, Folauhola Helina Latu’ila, Pupunu Tukuafu, Nikolasi Heni, Ana Maea Tupou, Taaniela Kula et al., "Tsunami runup and inundation in Tonga from the January 2022 eruption of Hunga Volcano." Pure and applied geophysics 180, no. 1 (2023): 1-22. http://dx.doi.org/10.1007/s00024-022-03215-5 DOI: https://doi.org/10.1007/s00024-022-03215-5
L. Kong, B. Aliaga, ’Ofa Fa‘anunu, and A. Gusman, “Hunga-Tonga Hunga-Ha‘apai Eruption and Tsunami: Importance of Real-time Sea Level Data for Tsunami Warning Decision-making.,” In: Ocean Data Conference. UNESCO, Sopot (2022).
Proudman, Joseph. "The effects on the sea of changes in atmospheric pressure." Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society 2, no. 4 (1929): 197-209. https://doi.org/10.1111/j.1365-246X.1929.tb05408.x DOI: https://doi.org/10.1111/j.1365-246X.1929.tb05408.x
Omira, R., R. S. Ramalho, Jinyoung Kim, Pablo J. González, U. Kadri, J. M. Miranda, F. Carrilho, and M. A. Baptista. "Global Tonga tsunami explained by a fast-moving atmospheric source." Nature 609, no. 7928 (2022): 734-740. http://dx.doi.org/10.1038/s41586-022-04926-4 DOI: https://doi.org/10.1038/s41586-022-04926-4
Carvajal, Matías, Ignacio Sepúlveda, Alejandra Gubler, and René Garreaud. "Worldwide signature of the 2022 Tonga volcanic tsunami." Geophysical Research Letters 49, no. 6 (2022): e2022GL098153. http://dx.doi.org/10.1029/2022GL098153 DOI: https://doi.org/10.1029/2022GL098153
Tanioka, Yuichiro, Yusuke Yamanaka, and Tatsuya Nakagaki. "Characteristics of the deep sea tsunami excited offshore Japan due to the air wave from the 2022 Tonga eruption." Earth, Planets and Space 74, no. 1 (2022): 61. http://dx.doi.org/10.1186/s40623-022-01614-5 DOI: https://doi.org/10.1186/s40623-022-01614-5
Devlin, Adam T., David A. Jay, Stefan A. Talke, and Jiayi Pan. "The 2022 Tonga Volcanic Tsunami: Lessons from a Global Event." EGUsphere 2022 (2022): 1-30. http://dx.doi.org/10.5194/egusphere-2022-925 DOI: https://doi.org/10.5194/egusphere-2022-925-supplement
Ramírez-Herrera, María Teresa, Oswaldo Coca, and Victor Vargas-Espinosa. "Tsunami effects on the Coast of Mexico by the Hunga Tonga-Hunga Ha’apai volcano eruption, Tonga." Pure and applied geophysics 179, no. 4 (2022): 1117-1137. http://dx.doi.org/10.31223/X5X33Z DOI: https://doi.org/10.1007/s00024-022-03017-9
Heinrich, P., A. Gailler, A. Dupont, V. Rey, H. Hébert, and C. Listowski. "Observations and simulations of the meteotsunami generated by the Tonga eruption on 15 January 2022 in the Mediterranean Sea." Geophysical Journal International 234, no. 2 (2023): 903-914. http://dx.doi.org/10.1093/gji/ggad092 DOI: https://doi.org/10.1093/gji/ggad092
Sekizawa, Shion, and Tsubasa Kohyama. "Meteotsunami observed in Japan following the Hunga Tonga eruption in 2022 investigated using a one-dimensional shallow-water model." SOLA 18 (2022): 129-134. https://doi.org/10.2151/sola.2022-021 DOI: https://doi.org/10.2151/sola.2022-021
CNN, “BMKG: Tsunami Tonga Tak Sampai ke Indonesia,” https://www.cnnindonesia.com/teknologi/20220115195425-199-747129/bmkg-tsunami-tonga-tak-sampai-ke-indonesia, (2022).
Heidarzadeh, Mohammad, and Kenji Satake. "Excitation of basin-wide modes of the Pacific Ocean following the March 2011 Tohoku tsunami." Pure and Applied Geophysics 171 (2014): 3405-3419. http://dx.doi.org/10.1007/s00024-013-0731-5 DOI: https://doi.org/10.1007/s00024-013-0731-5
Yamada, Masumi, Tung‐Cheng Ho, Jim Mori, Yasuhiro Nishikawa, and Masa‐Yuki Yamamoto. "Tsunami triggered by the Lamb wave from the 2022 Tonga volcanic eruption and transition in the offshore Japan region." Geophysical Research Letters 49, no. 15 (2022): e2022GL098752. http://dx.doi.org/10.1029/2022GL098752 DOI: https://doi.org/10.1029/2022GL098752
Antoniadis, C. "Experimental verification of wave breaking formulae for obliquely incident waves on mixed and gravel beaches." International Journal of Oceanography & Aquaculture 2, no. 1 (2018). http://dx.doi.org/10.23880/IJOAC-16000127 DOI: https://doi.org/10.23880/IJOAC-16000127
IOC, Manual on sea level measurement and interpretation. Volume IV - An update to 2006. , Paris, 2006.
Intergovernmental Oceanographic Commission. "Wave Reporting Procedures for Tide Observers in the Tsunami Warning System." (1988).
Villalonga, Joan, Àngel Amores, Sebastià Monserrat, Marta Marcos, Damià Gomis, and Gabriel Jordà. "Observational study of the heterogeneous global meteotsunami generated after the Hunga Tonga–Hunga Ha’apai Volcano eruption." Scientific Reports 13, no. 1 (2023): 8649. http://dx.doi.org/10.1038/s41598-023-35800-6 DOI: https://doi.org/10.1038/s41598-023-35800-6
Hussein, Emad, Farhan Lafta Rashid, Najah Al Maimuri, Ali Basem, and Hayder Ibrahim Mohammed. "Numerical Assessment of Tsunami Forces on Vertical Wall Structures: Impact of Inundation Depth and Incident Fluid Velocity." CFD Letters 16, no. 5 (2024): 78-90. https://doi.org/10.37934/cfdl.16.5.7890 DOI: https://doi.org/10.37934/cfdl.16.5.7890
Amores, Angel, Sebastian Monserrat, Marta Marcos, Daniel Argüeso, Joan Villalonga, Gabriel Jordà, and Damià Gomis. "Numerical simulation of atmospheric Lamb waves generated by the 2022 Hunga‐Tonga volcanic eruption." Geophysical Research Letters 49, no. 6 (2022): e2022GL098240. http://dx.doi.org/10.1029/2022GL098240 DOI: https://doi.org/10.1029/2022GL098240