Flow Behaviour and Wall Shear Stress Derivatives in Abdominal Aortic Aneurysm Models: A Detailed CFD Analysis into Asymmetry Effect

Authors

  • Djelloul Belkacemi Mechanics and Energetics Laboratory, Hassiba Ben Bouali University, Chlef, Algeria
  • Mohammad Al-Rawi Center for Engineering and Industrial Design, Waikato Institute of Technology, Hamilton, New Zealand https://orcid.org/0000-0002-5794-6871
  • Miloud Tahar Abbes Mechanics and Energetics Laboratory, Hassiba Ben Bouali University, Chlef, Algeria
  • Boualem Laribi FIMA Laboratory, Djilali Bounaama University, Khemis Miliana, Ain Defla, Algeria

DOI:

https://doi.org/10.37934/cfdl.14.9.6074

Keywords:

Hemodynamics, CFD, Abdominal Aortic Aneurysm, Geometry, Thrombus, Rupture

Abstract

Assessing the risk of rupture is extremely important to reduce the mortality of the abdominal aortic aneurysm (AAA). Current clinical guidelines suggest considering the maximum diameter as a criterion for planning and surgical intervention; however, this approach is too simplistic and overlooks other morphological parameters that are associated with the risk of rupture. The aim of this paper is to study the thrombogenicity and to predict the risk of AAA rupture by taking into consideration the geometrical asymmetry of the aneurysm, studying its effect on blood flow behaviour and vortical structure, spatiotemporal distribution of wall shear stresses (WSS), and their related parameters. To show the effect of asymmetry on blood flow dynamics and hemodynamic forces, five virtual models were constructed using five values of geometrical asymmetry ratio β ranging from β=0.2 (asymmetric model; AM) to β=1 (symmetric model; SM). Simulations were run for each geometry under transient physiological flow conditions using finite volume discretization. Resting flow rate was investigated in these models and our results demonstrate that the asymmetry of the aneurysm has a clear effect on the flow behaviour, and consequently on WSS distribution, oscillatory shear index (OSI) and time averaged wall shear stress (TAWSS). Furthermore, these preliminary findings suggest that thrombus formation and rupture risk are more probable in an asymmetric abdominal aortic aneurysm.

Author Biographies

Djelloul Belkacemi, Mechanics and Energetics Laboratory, Hassiba Ben Bouali University, Chlef, Algeria

belkacemi.djelloul@udes.dz

Mohammad Al-Rawi, Center for Engineering and Industrial Design, Waikato Institute of Technology, Hamilton, New Zealand

mohammad.al-rawi@wintec.ac.nz

Miloud Tahar Abbes, Mechanics and Energetics Laboratory, Hassiba Ben Bouali University, Chlef, Algeria

mi.taharabbes@univ-chlef.dz

Boualem Laribi, FIMA Laboratory, Djilali Bounaama University, Khemis Miliana, Ain Defla, Algeria

boualemlaribi@yahoo.com

References

Cosford, Paul A., Gillian C. Leng, and Justyn Thomas. "Screening for abdominal aortic aneurysm." Cochrane Database of Systematic Reviews 2 (2007). https://doi.org/10.1002/14651858.CD002945.pub2

Stather, P. W., D. A. Sidloff, I. A. Rhema, E. Choke, M. J. Bown, and R. D. Sayers. "A review of current reporting of abdominal aortic aneurysm mortality and prevalence in the literature." European Journal of Vascular and Endovascular Surgery 47, no. 3 (2014): 240-242. https://doi.org/10.1016/j.ejvs.2013.11.007

Schermerhorn, Marc. "A 66-year-old man with an abdominal aortic aneurysm: review of screening and treatment." JAMA 302, no. 18 (2009): 2015-2022. https://doi.org/10.1001/jama.2009.1502

Bouferrouk, A., S. Boutamine, and A. Mekarnia. "Dépistage opportuniste de l'anévrisme de l'aorte abdominale lors d'une écho-cardiographie transthoracique chez des patients sélectionnés: expérience d'un centre algérien." Journal des Maladies Vasculaires 40, no. 5 (2015): 312. https://doi.org/10.1016/j.jmv.2015.07.101

Hallin, A., David Bergqvist, and Lars Holmberg. "Literature review of surgical management of abdominal aortic aneurysm." European Journal of Vascular and Endovascular Surgery 22, no. 3 (2001): 197-204. https://doi.org/10.1053/ejvs.2001.1422

Scheer, Margot LJ, Robert A. Pol, Jan Willem Haveman, Ignace FJ Tielliu, Eric LG Verhoeven, Jan JAM Van Den Dungen, Maarten W. Nijsten, and Clark J. Zeebregts. "Effectiveness of treatment for octogenarians with acute abdominal aortic aneurysm." Journal of Vascular Surgery 53, no. 4 (2011): 918-925. https://doi.org/10.1016/j.jvs.2010.10.072

McPhee, James T., Joshua S. Hill, and Mohammad H. Eslami. "The impact of gender on presentation, therapy, and mortality of abdominal aortic aneurysm in the United States, 2001-2004." Journal of Vascular Surgery 45, no. 5 (2007): 891-899. https://doi.org/10.1016/j.jvs.2007.01.043

Sakalihasan, Natzi, Raymond Limet, and Olivier Damien Defawe. "Abdominal aortic aneurysm." The Lancet 365, no. 9470 (2005): 1577-1589. https://doi.org/10.1016/S0140-6736(05)66459-8

Doyle, Barry J., Anthony Callanan, Paul E. Burke, Pierce A. Grace, Michael T. Walsh, David A. Vorp, and Timothy M. McGloughlin. "Vessel asymmetry as an additional diagnostic tool in the assessment of abdominal aortic aneurysms." Journal of Vascular Surgery 49, no. 2 (2009): 443-454. https://doi.org/10.1016/j.jvs.2008.08.064

Vorp, David A. "Biomechanics of abdominal aortic aneurysm." Journal of Biomechanics 40, no. 9 (2007): 1887-1902. https://doi.org/10.1016/j.jbiomech.2006.09.003

Chaikof, Elliot L., David C. Brewster, Ronald L. Dalman, Michel S. Makaroun, Karl A. Illig, Gregorio A. Sicard, Carlos H. Timaran, Gilbert R. Upchurch, and Frank J. Veith. "The care of patients with an abdominal aortic aneurysm: the Society for Vascular Surgery practice guidelines." Journal of Vascular Surgery 50, no. 4 (2009): S2-S49. https://doi.org/10.1016/j.jvs.2009.07.002

Hong, Lim Sheh, Mohd Azrul Hisham Mohd Adib, Mohd Shafie Abdullah, Nur Hartini Mohd Taib, Radhiana Hassan, and Azian Abd Aziz. "Study of extracted geometry effect on patient-specific cerebral aneurysm model with different threshold coefficient (Cthres)." CFD Letters 12, no. 10 (2020): 1-14. https://doi.org/10.37934/cfdl.12.10.114

Vande Geest, Jonathan P., David E. Schmidt, Michael S. Sacks, and David A. Vorp. "The effects of anisotropy on the stress analyses of patient-specific abdominal aortic aneurysms." Annals of Biomedical Engineering 36, no. 6 (2008): 921-932. https://doi.org/10.1007/s10439-008-9490-3

Raut, Samarth S., Santanu Chandra, Judy Shum, and Ender A. Finol. "The role of geometric and biomechanical factors in abdominal aortic aneurysm rupture risk assessment." Annals of Biomedical Engineering 41, no. 7 (2013): 1459-1477. https://doi.org/10.1007/s10439-013-0786-6

Drewe, Corey J., Louis P. Parker, Lachlan J. Kelsey, Paul E. Norman, Janet T. Powell, and Barry J. Doyle. "Haemodynamics and stresses in abdominal aortic aneurysms: A fluid-structure interaction study into the effect of proximal neck and iliac bifurcation angle." Journal of Biomechanics 60 (2017): 150-156. https://doi.org/10.1016/j.jbiomech.2017.06.029

Peattie, Robert A., Tiffany J. Riehle, and Edward I. Bluth. "Pulsatile flow in fusiform models of abdominal aortic aneurysms: flow fields, velocity patterns and flow-induced wall stresses." Journal of Biomechanical Engineering 126, no. 4 (2004): 438-446. https://doi.org/10.1115/1.1784478

Salsac, Anne-Virginie, Steven R. Sparks, and Juan C. Lasheras. "Hemodynamic changes occurring during the progressive enlargement of abdominal aortic aneurysms." Annals of Vascular Surgery 18, no. 1 (2004): 14-21. https://doi.org/10.1007/s10016-003-0101-3

Deplano, Valérie, Clark Meyer, Carine Guivier-Curien, and Eric Bertrand. "New insights into the understanding of flow dynamics in an in vitro model for abdominal aortic aneurysms." Medical Engineering & Physics 35, no. 6 (2013): 800-809. https://doi.org/10.1016/j.medengphy.2012.08.010

Algabri, Yousif A., Surapong Chatpun, and Ishkrizat Taib. "An investigation of pulsatile blood flow in an angulated neck of abdominal aortic aneurysm using computational fluid dynamics." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 57, no. 2 (2019): 265-274.

Jafarzadeh, Sina, Arsalan Nasiri Sadr, Ehsan Kaffash, Sahar Goudarzi, Ehsan Golab, and Arash Karimipour. "The effect of hematocrit and nanoparticles diameter on hemodynamic parameters and drug delivery in abdominal aortic aneurysm with consideration of blood pulsatile flow." Computer Methods and Programs in Biomedicine 195 (2020): 105545. https://doi.org/10.1016/j.cmpb.2020.105545

Hegde, Pranav, Gowrava Shenoy B., A. B. V. Barboza, S. M. Abdul Khader, Raghuvir Pai, Masaaki Tamagawa, Ravindra Prabhu, and D. Srikanth Rao. "Numerical Analysis on A Non-Critical Stenosis in Renal Artery." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 88, no. 3 (2021): 31-48. https://doi.org/10.37934/arfmts.88.3.3148

Wen, Jun, Ding Yuan, Qingyuan Wang, Yao Hu, Jichun Zhao, Tinghui Zheng, and Yubo Fan. "A computational simulation of the effect of hybrid treatment for thoracoabdominal aortic aneurysm on the hemodynamics of abdominal aorta." Scientific Reports 6, no. 1 (2016): 1-9. https://doi.org/10.1038/srep23801

Salsac, A-V., S. R. Sparks, J-M. Chomaz, and J. C. Lasheras. "Evolution of the wall shear stresses during the progressive enlargement of symmetric abdominal aortic aneurysms." Journal of Fluid Mechanics 560 (2006): 19-51. https://doi.org/10.1017/S002211200600036X

Soudah, E., G. Vilalta, M. Bordone, F. Nieto, J. A. Vilalta, and C. Vaquero. "Estudio paramétrico de tensiones hemodinámicas en modelos de aneurismas de aorta abdominal." Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 31, no. 2 (2015): 106-112. https://doi.org/10.1016/j.rimni.2014.02.003

Finol, E. A., K. Keyhani, and C. H. Amon. "The effect of asymmetry in abdominal aortic aneurysms under physiologically realistic pulsatile flow conditions." Journal of Biomechanical Engineering 125, no. 2 (2003): 207-217. https://doi.org/10.1115/1.1543991

Scotti, Christine M., Alexander D. Shkolnik, Satish C. Muluk, and Ender A. Finol. "Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness." Biomedical Engineering Online 4, no. 1 (2005): 1-22. https://doi.org/10.1186/1475-925X-4-64

Di Achille, P., G. Tellides, C. A. Figueroa, and J. D. Humphrey. "A haemodynamic predictor of intraluminal thrombus formation in abdominal aortic aneurysms." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, no. 2172 (2014): 20140163. https://doi.org/10.1098/rspa.2014.0163

Seman, Che Mohammad Hafizal Muzammil Che, Nur Ayuni Marzuki, Nofrizalidris Darlis, Noraini Marsi, Zuliazura Mohd Salleh, Izuan Amin Ishak, Ishkrizat Taib, and Safra Liyana Sukiman. "Comparison of Hemodynamic Performances Between Commercial Available Stents Design on Stenosed Femoropopliteal Artery." CFD Letters 12, no. 7 (2020): 17-25. https://doi.org/10.37934/cfdl.12.7.1725

Zambrano, Byron A., Hamidreza Gharahi, ChaeYoung Lim, Farhad A. Jaberi, Jongeun Choi, Whal Lee, and Seungik Baek. "Association of intraluminal thrombus, hemodynamic forces, and abdominal aortic aneurysm expansion using longitudinal CT images." Annals of Biomedical Engineering 44, no. 5 (2016): 1502-1514. https://doi.org/10.1007/s10439-015-1461-x

Piatti, F., D. Belkacemi, A. Caimi, F. Sturla, A. Greiser, F. Pluchinotta, and A. Redaelli. "On the potential of 4D Flow in guiding CFD analyses: a case study of aortic coartaction." In Proceedings VII Meeting Italian Chapter of the European Society of Biomechanics (ESB-ITA 2017), pp. 28-29. 2017.

Stefanov, Florian, Sherif Sultan, Liam Morris, Ala Elhelali, Edel P. Kavanagh, Violet Lundon, Mohamed Sultan, and Niamh Hynes. "Computational fluid analysis of symptomatic chronic type B aortic dissections managed with the Streamliner Multilayer Flow Modulator." Journal of Vascular Surgery 65, no. 4 (2017): 951-963. https://doi.org/10.1016/j.jvs.2016.07.135

Khader, Shah Mohammed Abdul, Adi Azriff, Raghuvir Pai, Mohammed Zubair, Kamarul Arifin Ahmad, Zanuldin Ahmad, and Koteshwara Prakashini. "Haemodynamics study in subject-specific abdominal aorta with renal bifurcation using CFD-a case study." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 50, no. 2 (2018): 118-121.

Zakaria, Mohamad Shukri, Farzad Ismail, Masaaki Tamagawa, Ahmad Fazli Abdul Azi, Surjatin Wiriadidjaya, Adi Azrif Basri, and Kamarul Arifin Ahmad. "Computational fluid dynamics study of blood flow in aorta using OpenFOAM." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 43, no. 1 (2018): 81-89.

Mills, C. J., I. T. Gabe, J. H. Gault, D. T. Mason, J. Ross Jr, E. Braunwald, and J. P. Shillingford. "Pressure-flow relationships and vascular impedance in man." Cardiovascular Research 4, no. 4 (1970): 405-417. https://doi.org/10.1093/cvr/4.4.405

Abbas, M. Ali, Y. Q. Bai, M. M. Rashidi, and M. M. Bhatti. "Application of drug delivery in magnetohydrodynamics peristaltic blood flow of nanofluid in a non-uniform channel." Journal of Mechanics in Medicine and Biology 16, no. 04 (2016): 1650052. https://doi.org/10.1142/S0219519416500524

Al-Azawy, Mohammed Ghalib, Saleem Khalefa Kadhim, and Azzam Sabah Hameed. "Newtonian and non-newtonian blood rheology inside a model of stenosis." CFD Letters 12, no. 11 (2020): 27-36. https://doi.org/10.37934/cfdl.12.11.2736

Westerhof, Nicolaas, Nikos Stergiopulos, Mark I. M. Noble, and Berend E. Westerhof. Snapshots of hemodynamics: an aid for clinical research and graduate education. New York: Springer, 2019. https://doi.org/10.1007/978-3-319-91932-4

Pedley, Timothy J., and Y. C. Fung. "The fluid mechanics of large blood vessels." Journal of Biomechanical Engineering 102, no. 4 (1980): 345. https://doi.org/10.1115/1.3138235

Ramakrishnan, K., and K. Shailendhra. "Hydromagnetic blood flow through a uniform channel with permeable walls covered by porous media of finite thickness." Journal of Applied Fluid Mechanics 6, no. 1 (2013): 39-47. https://doi.org/10.36884/jafm.6.01.19479

He, Xiaoyi, and David N. Ku. "Pulsatile flow in the human left coronary artery bifurcation: average conditions." Journal of Biomechanical Engineering 118, no. 1 (1996): 74-82. https://doi.org/10.1115/1.2795948

Himburg, Heather A., Deborah M. Grzybowski, Andrew L. Hazel, Jeffrey A. LaMack, Xue-Mei Li, and Morton H. Friedman. "Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability." American Journal of Physiology-Heart and Circulatory Physiology 286, no. 5 (2004): H1916-H1922. https://doi.org/10.1152/ajpheart.00897.2003

Budwig, R., D. Elger, H. Hooper, and J. Slippy. "Steady flow in abdominal aortic aneurysm models." Journal of Biomechanical Engineering 115, no. 4A (1993): 418-423. https://doi.org/10.1115/1.2895506

Deplano, Valerie, Yannick Knapp, Eric Bertrand, and Emmanuel Gaillard. "Flow behaviour in an asymmetric compliant experimental model for abdominal aortic aneurysm." Journal of Biomechanics 40, no. 11 (2007): 2406-2413. https://doi.org/10.1016/j.jbiomech.2006.11.017

Jeong, Jinhee, and Fazle Hussain. "On the identification of a vortex." Journal of Fluid Mechanics 285 (1995): 69-94. https://doi.org/10.1017/S0022112095000462

Formaggia, Luca, Alfio Quarteroni, and Allesandro Veneziani, eds. Cardiovascular Mathematics: Modeling and simulation of the circulatory system. Vol. 1. Springer Science & Business Media, 2010. https://doi.org/10.1007/978-88-470-1152-6

Malek, Adel M., Seth L. Alper, and Seigo Izumo. "Hemodynamic shear stress and its role in atherosclerosis." JAMA 282, no. 21 (1999): 2035-2042. https://doi.org/10.1001/jama.282.21.2035

Boyd, April J., David CS Kuhn, Richard J. Lozowy, and Gordon P. Kulbisky. "Low wall shear stress predominates at sites of abdominal aortic aneurysm rupture." Journal of Vascular Surgery 63, no. 6 (2016): 1613-1619. https://doi.org/10.1016/j.jvs.2015.01.040

Qiu, Yue, Ding Yuan, Jun Wen, Yubo Fan, and Tinghui Zheng. "Numerical identification of the rupture locations in patient-specific abdominal aortic aneurysmsusing hemodynamic parameters." Computer Methods in Biomechanics and Biomedical Engineering 21, no. 1 (2018): 1-12. https://doi.org/10.1080/10255842.2017.1410796

da Silva, Erasmo Simão, Aldo Junqueira Rodrigues, Erasmo Magalhães Castro de Tolosa, Consuelo Junqueira Rodrigues, Gladys Villas Boas do Prado, and João Carlos Nakamoto. "Morphology and diameter of infrarenal aortic aneurysms: a prospective autopsy study." Cardiovascular Surgery 8, no. 7 (2000): 526-532. https://doi.org/10.1016/S0967-2109(00)00060-0

Kelsey, Lachlan J., Janet T. Powell, Paul E. Norman, Karol Miller, and Barry J. Doyle. "A comparison of hemodynamic metrics and intraluminal thrombus burden in a common iliac artery aneurysm." International Journal for Numerical Methods in Biomedical Engineering 33, no. 5 (2017): e2821. https://doi.org/10.1002/cnm.2821

Downloads

Published

2022-09-30

How to Cite

Belkacemi, D., Al-Rawi, M., Abbes, M. T. ., & Laribi, B. (2022). Flow Behaviour and Wall Shear Stress Derivatives in Abdominal Aortic Aneurysm Models: A Detailed CFD Analysis into Asymmetry Effect. CFD Letters, 14(9), 60–74. https://doi.org/10.37934/cfdl.14.9.6074

Issue

Section

Articles