Handling Volatility and Nonlinearity in Wind Speed Data: A Comparative Analysis between ARIMA-GARCH and ARIMA-MLP

Authors

  • Nor Hafizah Hussin Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Fadhilah Yusoff Department of Mathematics and Statistics, Faculty of Science, Universiti Teknologi Malaysia, 81300, Skudai, Johor, Malaysia
  • Siti Haryanti Hj Hairol Anuar Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Rahaini Mohd said Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Adam Samsudin Fakulti Teknologi dan Kejuruteraan Elektrik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Nur Azura Noor Azhuan Fakulti Teknologi dan Kejuruteraan Elektrik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Nurul Hajar Mohd Yussoff Fakulti Teknologi dan Kejuruteraan Industri dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

DOI:

https://doi.org/10.37934/aram.121.1.4457

Keywords:

Daily wind speed, GARCH, MLP, volatility, nonlinearity, forecasting

Abstract

One of the notable features of wind speed is its volatility and nonlinearity. Thorough assessment on the presence of these features is crucial to obtain a wind speed forecasting model with higher accuracy. In this study, the conventional time series linear model; ARIMA model was applied to assess the internal structure of the wind speed daily data in two stations in Johor; Senai and Mersing. Due to the existence of some nonlinearity features in the residuals part of ARIMA modelling, two nonlinear models were introduced to capture the internal structure of the residual data. Both conventional time series models; GARCH, and machine learning model; MLP was applied to model the residuals of ARIMA model. The out-sample performance in forecasting accuracy was compared between the ARIMA-GARCH model and the ARIMA-MLP model. The findings proves that MLP model has outperformed GARCH model in capturing the dynamics in the residual data by providing the lowest error measurements. Thus, the machine learning approaches has proven its superiority against the conventional time series nonlinear model in handling the nonlinearity in the daily wind speed series for wind speed forecasting.

Downloads

Download data is not yet available.

Author Biographies

Nor Hafizah Hussin, Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

norhafizah.hussin@utem.edu.my

Fadhilah Yusoff, Department of Mathematics and Statistics, Faculty of Science, Universiti Teknologi Malaysia, 81300, Skudai, Johor, Malaysia

fadhilahy@utm.my

Siti Haryanti Hj Hairol Anuar, Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

sitiharyanti@utem.edu.my

Rahaini Mohd said, Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

rahaini@utem.edu.my

Adam Samsudin, Fakulti Teknologi dan Kejuruteraan Elektrik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

adam.samsudin@utem.edu.my

Nur Azura Noor Azhuan, Fakulti Teknologi dan Kejuruteraan Elektrik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

nurazura@utem.edu.my

Nurul Hajar Mohd Yussoff, Fakulti Teknologi dan Kejuruteraan Industri dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

nurulhajar@utem.edu.my

Downloads

Published

2024-07-30

How to Cite

Hussin, N. H. ., Yusoff, F. ., Hj Hairol Anuar, S. H. ., Mohd said, R. ., Samsudin, A. ., Noor Azhuan, N. A. ., & Mohd Yussoff, N. H. (2024). Handling Volatility and Nonlinearity in Wind Speed Data: A Comparative Analysis between ARIMA-GARCH and ARIMA-MLP. Journal of Advanced Research in Applied Mechanics, 121(1), 44–57. https://doi.org/10.37934/aram.121.1.4457

Issue

Section

Articles

Most read articles by the same author(s)