Twist Blade Distributor in Fluidization Systems: Part 2 – The Air Flow Characteristics

Authors

  • Mohammad Azrul Rizal Alias Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Kampus Alam UniMAP, Pauh Putra, 02600 Arau, Perlis, Malaysia
  • Mohd Al Hafiz Mohd Nawi Simulation and Modelling Research Group (SiMMREG), Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Kampus Alam UniMAP, Pauh Putra, 02600 Arau, Perlis, Malaysia
  • Mohd Sharizan Md Sarip Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Kompleks Pusat Pengajian Jejawi 3, Kawasan Perindustrian Jejawi, 02600 Arau, Perlis, Malaysia
  • Md Tasyrif Abdul Rahman Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Kampus Alam UniMAP, Pauh Putra, 02600 Arau, Perlis, Malaysia
  • Muhamad Silmie Mohamad Shabri Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Kampus Alam UniMAP, Pauh Putra, 02600 Arau, Perlis, Malaysia
  • Raja Muhammad Zulkifli Raja Ibrahim Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Kampus Alam UniMAP, Pauh Putra, 02600 Arau, Perlis, Malaysia

DOI:

https://doi.org/10.37934/araset.29.2.1224

Keywords:

Fluidized Bed, Twist Blade Distributor, Velocity Magnitude, Tangential Velocity

Abstract

This study examines the findings of numerical analysis studies that were conducted to determine how the arrangement of the blade distributors in a fluidization system affects the distribution of air flow distribution. In contrast to the conventional methods, which give the particle a swirling motion, the current fluidization systems produce a circular movement of a beds. Therefore, the influence of twist angle blade (60° and 100°) was investigated through to the horizontal inclination angle (15°) and radial inclination angle (10° and 12°) blade distributors. In a fluidization systems, the simulation was used to calculate and assess the performance outcomes of three velocity components: tangential velocity, axial velocity, and radial velocity. These components represent the flow of fluid inside the plenum fluidizations systems. According to the results of the numerical study that used a horizontal inclination of 15°, the velocity of the airflow in the fluidization systems may reach up to 8 m/s. This circumstance occurred because the air flow was quite near to the large opening area where the airflow was allowed to enter. This is due to the less of an interruption to the airflow when it enters the gap area between the two blades distributor.

Author Biographies

Mohammad Azrul Rizal Alias, Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Kampus Alam UniMAP, Pauh Putra, 02600 Arau, Perlis, Malaysia

azrulrizalalias@gmail.com

Mohd Al Hafiz Mohd Nawi, Simulation and Modelling Research Group (SiMMREG), Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Kampus Alam UniMAP, Pauh Putra, 02600 Arau, Perlis, Malaysia

alhafiznawi@unimap.edu.my

Mohd Sharizan Md Sarip, Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Kompleks Pusat Pengajian Jejawi 3, Kawasan Perindustrian Jejawi, 02600 Arau, Perlis, Malaysia

sharizan@unimap.edu.my

Md Tasyrif Abdul Rahman, Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Kampus Alam UniMAP, Pauh Putra, 02600 Arau, Perlis, Malaysia

tasyrif@unimap.edu.my

Muhamad Silmie Mohamad Shabri, Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Kampus Alam UniMAP, Pauh Putra, 02600 Arau, Perlis, Malaysia

muhamadsilmie92@gmail.com

Raja Muhammad Zulkifli Raja Ibrahim, Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Kampus Alam UniMAP, Pauh Putra, 02600 Arau, Perlis, Malaysia

rajamuhdzulkifli93@gmail.com

Downloads

Published

2023-01-03

How to Cite

Mohammad Azrul Rizal Alias, Mohd Al Hafiz Mohd Nawi, Mohd Sharizan Md Sarip, Md Tasyrif Abdul Rahman, Muhamad Silmie Mohamad Shabri, & Raja Muhammad Zulkifli Raja Ibrahim. (2023). Twist Blade Distributor in Fluidization Systems: Part 2 – The Air Flow Characteristics. Journal of Advanced Research in Applied Sciences and Engineering Technology, 29(2), 12–24. https://doi.org/10.37934/araset.29.2.1224

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)