Enhancing Stock Price Predictions with a Multi-Technical Indicator Strategy Model

Authors

  • Liaw Geok Pheng Faculty of Teknologi Maklumat dan Komunikasi (FTMK), Universiti Teknikal Malaysia Melaka (UTeM), 76100 Durian Tunggal, Melaka, Malaysia
  • Halimaton Hakimi Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, 326100 Seri Iskandar, Perak, Malaysia
  • Tay Choo Chuan Faculty of Eletrical Enginering, Universiti Teknikal Malaysia Melaka (UTeM), 76100 Durian Tunggal, Melaka, Malaysia
  • Foong Wai Leong Goldman Seed Management, 91-2, Jalan BK 5A/2, Bandar Kinrara, 47180 Puchong, Selangor
  • Norzihani Yusof Faculty of Teknologi Maklumat dan Komunikasi (FTMK), Universiti Teknikal Malaysia Melaka (UTeM), 76100 Durian Tunggal, Melaka, Malaysia
  • Rusul Mansoor Al-Amri College of Nursing, University of Al-Ameed, Karbala 198, Iraq

DOI:

https://doi.org/10.37934/araset.64.2.88103

Keywords:

stock market, maximal return, correlation, multiple regression model

Abstract

Participating in the stock market goes beyond simply investing capital; it requires a deep understanding of dynamic market intricacies. Proficiency in interpreting market trends is crucial for making informed decisions that maximize returns and minimize potential losses. Without this expertise, investors are vulnerable to financial missteps resulting from misreading trends. The research addresses these concerns through a focused approach, guided by three key objectives. First and foremost, it conducts a thorough analysis of indicator correlations to assess the effectiveness of proposed technical indicators for accurate stock market predictions. Verified correlations then inform the application of a discerning multiple regression model, optimizing the use of individual indicators or their combinations. Lastly, a meticulous evaluation of predictive precision utilizes quantitative measures such as MAPE, MAD and MSE to provide a comprehensive assessment of indicators and strategies, shedding light on their effectiveness in the intricate realm of stock market forecasting.

Downloads

Author Biographies

Liaw Geok Pheng, Faculty of Teknologi Maklumat dan Komunikasi (FTMK), Universiti Teknikal Malaysia Melaka (UTeM), 76100 Durian Tunggal, Melaka, Malaysia

pheng0128@gmail.com

Halimaton Hakimi, Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, 326100 Seri Iskandar, Perak, Malaysia

halimaton.saadiah@apu.edu.my

Tay Choo Chuan, Faculty of Eletrical Enginering, Universiti Teknikal Malaysia Melaka (UTeM), 76100 Durian Tunggal, Melaka, Malaysia

tay@utem.edu.my

Foong Wai Leong, Goldman Seed Management, 91-2, Jalan BK 5A/2, Bandar Kinrara, 47180 Puchong, Selangor

goldmanseeds72@gmail.com

Norzihani Yusof, Faculty of Teknologi Maklumat dan Komunikasi (FTMK), Universiti Teknikal Malaysia Melaka (UTeM), 76100 Durian Tunggal, Melaka, Malaysia

norzihani@utem.edu.my

Rusul Mansoor Al-Amri, College of Nursing, University of Al-Ameed, Karbala 198, Iraq

ru.al-amri@alameed.edu.iq

Downloads

Published

2025-03-17

How to Cite

Liaw, G. P., Hakimi, H., Tay, C. C., Foong, W. L., Yusof, N., & Al-Amri, R. M. (2025). Enhancing Stock Price Predictions with a Multi-Technical Indicator Strategy Model. Journal of Advanced Research in Applied Sciences and Engineering Technology, 64(2), 88–103. https://doi.org/10.37934/araset.64.2.88103

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.