Modeling of Electric MHD Flow of Nanoparticles in a CMC-Water Based Casson Hybrid Nanofluid over a Porous Medium

Authors

  • Hamzeh Alkasasbeh Department of Mathematics, Faculty of Science, Ajloun National University, P.O. Box 43, Ajloun 26810, Jordan
  • Feras A. Hanandeh Department of Computer Information Systems Faculty of Prince Al-Hussein Bin Abdallah II for Information Technology, Hashemite University, P.O. Box 150459, Zarqa 13115, Jordan
  • Bajes Z. Aljunaeidia Department of Computer Science, Faculty of Information Technology, Ajloun National University, P.O. Box 43, Ajloun 26810, Jordan
  • Nesreen M. Al-Olaimat Department of Mathematics, Faculty of Science, Ajloun National University, P.O. Box 43, Ajloun 26810, Jordan
  • Abduallah M. Alzyout Department of Mathematics, Faculty of Science, Ajloun National University, P.O. Box 43, Ajloun 26810, Jordan
  • Sara A. Khalil Mathematics Department, Faculty of Science, Applied Science Private University (ASU) Amman, Jordan
  • Muhammad Khairul Anuar Mohamed Centre for Mathematical Sciences, Universiti Malaysia Pahang, Persiaran Lebuhraya Tun Khalil Yaakob, Kuantan, Pahang, 26300, Malaysia

DOI:

https://doi.org/10.37934/arnht.24.1.2844

Keywords:

Casson Fluid, Hybrid Nanofluid, Electric MHD, Stretching Sheet, Porous Medium

Abstract

The principal focus of this exploration is to study the computationally simulate the combined convection of CMC-water-based Casson hybrid nanofluid through a stretching sheet with electric magnetic force in a porous medium. Copper (Cu) and Silver (Ag) nanoparticles are included to enhance the heat transfer performance of CMC-water. The physical problem is formulated with mathematical PDEs, and to solve this, initially we used similarity transformation technique to reduce the PDEs into ODEs, then Runge-Kutta Fehlberg method (RKFM) of order four with shooting technique is adopted for further reduction from the non-linear ODEs to first order DEs. The influence of key parameters such as the magnetic field parameter (M), porous medium parameters (K), electric field factor (E), radiation parameter (Nr), permeability parameter (λ), Casson parameter (β), and Eckert number (Ec) on relevant physical quantities is illustrated through tables and graphical visualizations. The impact of these parameters on velocity and temperature profiles, as well as on the skin friction coefficient and Nusselt number of the nanofluid, is observed. Our results indicate that an increase in the Casson parameter values leads to a decrease in the velocity of the host fluid in the case of opposite flow, and a similar behavior is observed with the nanoparticle porous medium parameter (K) in the case of assisting flow. Furthermore, the use of the Runge-Kutta Fehlberg Method (RKFM) is found to be more accurate and reliable in dealing with the problem studied in this work.

Downloads

Download data is not yet available.

Author Biographies

Hamzeh Alkasasbeh, Department of Mathematics, Faculty of Science, Ajloun National University, P.O. Box 43, Ajloun 26810, Jordan

alkasasbehh@gmail.com

Feras A. Hanandeh, Department of Computer Information Systems Faculty of Prince Al-Hussein Bin Abdallah II for Information Technology, Hashemite University, P.O. Box 150459, Zarqa 13115, Jordan

feras@hu.edu.jo

Bajes Z. Aljunaeidia, Department of Computer Science, Faculty of Information Technology, Ajloun National University, P.O. Box 43, Ajloun 26810, Jordan

bajes.aljunaeidi@anu.ed.jo

Nesreen M. Al-Olaimat, Department of Mathematics, Faculty of Science, Ajloun National University, P.O. Box 43, Ajloun 26810, Jordan

nmolaimat@anu.edu.jo

Abduallah M. Alzyout, Department of Mathematics, Faculty of Science, Ajloun National University, P.O. Box 43, Ajloun 26810, Jordan

abdallahalzyout@gmail.com

Sara A. Khalil, Mathematics Department, Faculty of Science, Applied Science Private University (ASU) Amman, Jordan

s_khalil@asu.edu.jo

References

Pramanik, S. "Casson fluid flow and heat transfer past an exponentially porous stretching surface in presence of thermal radiation." Ain shams engineering journal 5, no. 1 (2014): 205-212. https://doi.org/10.1016/j.asej. 2013.05.003 . DOI: https://doi.org/10.1016/j.asej.2013.05.003

Wajihah, S AfiqahSankar DS. "A review on non-Newtonian fluid models for multi-layered blood rheology in constricted arteries." Archive of Applied Mechanics 93, no. 5 (2023): 1771-1796. https://doi.org/10.1007/s00419-023-02368-6 DOI: https://doi.org/10.1007/s00419-023-02368-6

Oke, Abayomi S, Mutuku Winifred N, Kimathi Mark, and Animasaun Isaac L. "Insight into the dynamics of non-Newtonian Casson fluid over a rotating non-uniform surface subject to Coriolis force." Nonlinear Engineering 9, no. 1 (2020): 398-411. https://doi.org/10.1515/nleng-2020-0025 DOI: https://doi.org/10.1515/nleng-2020-0025

Jamil, Dzuliana Fatin, Uddin Salah, Kazi Mohsin, Roslan Rozaini, Gorji MR, and Akhir Mohd Kamalrulzaman Md. "MHD blood flow effects of Casson fluid with Caputo-Fabrizio fractional derivatives through an inclined blood vessels with thermal radiation." Heliyon 9, no. 11 (2023). https://doi.org/10.1016/j.heliyon.2023.e21780 DOI: https://doi.org/10.1016/j.heliyon.2023.e21780

Shahzad, Hasan, Wang Xinhua, Ghaffari Abuzar, Iqbal Kaleem, Hafeez Muhammad Bilal, Krawczuk Marek, and Wojnicz Wiktoria. "Fluid structure interaction study of non-Newtonian Casson fluid in a bifurcated channel having stenosis with elastic walls." Scientific Reports 12, no. 1 (2022): 12219 https://doi.org/10.1038/s41598-022-16213-3 DOI: https://doi.org/10.1038/s41598-022-16213-3

Mustafa, M, Hayat T, Pop I, and Aziz Al. "Unsteady boundary layer flow of a Casson fluid due to an impulsively started moving flat plate." Heat Transfer—Asian Research 40, no. 6 (2011): 563-576. https://doi.org/10.1002 /htj.20358 DOI: https://doi.org/10.1002/htj.20358

Mustafa, Meraj, Hayat Tasawar, Ioan Pop, and Hendi Awatif. "Stagnation-point flow and heat transfer of a Casson fluid towards a stretching sheet." Zeitschrift für Naturforschung A 67, no. 1-2 (2012): 70-76. https://doi.org/ 10.5560/zna.2011-0057 DOI: https://doi.org/10.5560/zna.2011-0057

Nadeem, Sohail, Haq Rizwan Ul, Akbar Noreen Sher, and Khan Zafar Hayat. "MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet." Alexandria Engineering Journal 52, no. 4 (2013): 577-582. https://doi.org/10.1016/j.aej.2013.08.005 DOI: https://doi.org/10.1016/j.aej.2013.08.005

Alwawi, Firas A, Alkasasbeh Hamzeh T, Rashad AM, and Idris Ruwaidiah. "MHD natural convection of Sodium Alginate Casson nanofluid over a solid sphere." Results in physics 16 (2020): 102818. https://doi.org/10.1016/j.rinp.2019.102818 DOI: https://doi.org/10.1016/j.rinp.2019.102818

Alwawi, Firas A, Alkasasbeh Hamzeh T, Rashad Ahmed M, and Idris Ruwaidiah. "A numerical approach for the heat transfer flow of carboxymethyl cellulose-water based Casson nanofluid from a solid sphere generated by mixed convection under the influence of Lorentz force." Mathematics 8, no. 7 (2020): 1094. https://doi.org/10.3390/math8071094 DOI: https://doi.org/10.3390/math8071094

Alkasasbeh, Hamzeh Taha. "Numerical solution of micropolar Casson fluid behaviour on steady MHD natural convective flow about a solid sphere." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 50, no. 1 (2018): 55-66.

Mohamed, Muhammad Khairul Anuar, Yasin Siti Hanani Mat, Salleh Mohd Zuki, and Alkasasbeh Hamzeh Taha. "MHD stagnation point flow and heat transfer over a stretching sheet in a blood-based casson ferrofluid with newtonian heating." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 82, no. 1 (2021): 1-11. https://doi.org/10.37934/arfmts.69.2.118 DOI: https://doi.org/10.37934/arfmts.82.1.111

Mohamed, Muhammad Khairul Anuar, Ishak Anuar, Rosli Wan Muhammad Hilmi Wan, Soid Siti Khuzaimah, and Alkasasbeh Hamzeh Taha. "MHD Natural Convection Flow of Casson Ferrofluid over a Vertical Truncated Cone." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 112, no. 1 (2023): 94-105. https://doi.org/ 10.37934/arfmts.112.1.94105. DOI: https://doi.org/10.37934/arfmts.112.1.94105

Alkasasbeh, Hamzeh. "Numerical solution of heat transfer flow of casson hybrid nanofluid over vertical stretching sheet with magnetic field effect." CFD Letters 14, no. 3 (2022): 39-52. https://doi.org/10.37934/cfdl.14.3.3952 DOI: https://doi.org/10.37934/cfdl.14.3.3952

Qing, Jia, Bhatti Muhammad Mubashir, Abbas Munawwar Ali, Rashidi Mohammad Mehdi, and Ali Mohamed El-Sayed. "Entropy generation on MHD Casson nanofluid flow over a porous stretching/shrinking surface." Entropy 18, no. 4 (2016): 123 https://doi.org/10.3390/e18040123. DOI: https://doi.org/10.3390/e18040123

Adhikari, RajatDas Sanatan. "Biological transmission in a magnetized reactive Casson–Maxwell nanofluid over a tilted stretchy cylinder in an entropy framework." Chinese Journal of Physics 86 (2023): 194-226 https://doi.org/10.1016/j.cjph.2023.10.008. DOI: https://doi.org/10.1016/j.cjph.2023.10.008

Alqahtani, Aisha M, Rafique Khadija, Mahmood Zafar, Al-Sinan Bushra R, Khan Umar, and Hassan Ahmed M. "MHD rotating flow over a stretching surface: The role of viscosity and aggregation of nanoparticles." Heliyon 9, no. 11 (2023): https://doi.org/10.1016/j.heliyon.2023.e21107 DOI: https://doi.org/10.1016/j.heliyon.2023.e21107

Vajravelu, KRollins D. "Heat transfer in a viscoelastic fluid over a stretching sheet." Journal of Mathematical analysis and applications 158, no. 1 (1991): 241-255. https://doi.org/10.1016/0022-247X(91)90280-D DOI: https://doi.org/10.1016/0022-247X(91)90280-D

Maranna, T, Sachhin SM, Mahabaleshwar US, and Hatami M. "Impact of Navier’s slip and MHD on laminar boundary layer flow with heat transfer for non-Newtonian nanofluid over a porous media." Scientific Reports 13, no. 1 (2023): 12634 https://doi.org/10.1038/s41598-023-39153-y. DOI: https://doi.org/10.1038/s41598-023-39153-y

Puneeth, V, Ali Farhan, Khan M Riaz, Anwar M Shoaib, and Ahammad N Ameer. "Theoretical analysis of the thermal characteristics of Ree–Eyring nanofluid flowing past a stretching sheet due to bioconvection." Biomass Conversion and Biorefinery 14, no. 7 (2024): 8649-8660 https://doi.org/10.1007/s13399-022-02985-1 DOI: https://doi.org/10.1007/s13399-022-02985-1

Gupta, PSGupta AS. "Heat and mass transfer on a stretching sheet with suction or blowing." The Canadian journal of chemical engineering 55, no. 6 (1977): 744-746. https://doi.org/10.1002/cjce.5450550619 DOI: https://doi.org/10.1002/cjce.5450550619

Magyari, EKeller B. "Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface." Journal of Physics D: Applied Physics 32, no. 5 (1999): 577. DOI: https://doi.org/10.1088/0022-3727/32/5/012

Elbashbeshy, EMA. "Heat transfer over an exponentially stretching continuous surface with suction." Archives of Mechanics 53, no. 6 (2001): 643-651.

Partha, MK, Murthy PVSN, and Rajasekhar GP. "Effect of viscous dissipation on the mixed convection heat transfer from an exponentially stretching surface." Heat and Mass transfer 41 (2005): 360-366. https://doi.org/10.1007/ s00231-004-0552-2 DOI: https://doi.org/10.1007/s00231-004-0552-2

Khan, Sujit Kumar. "Boundary layer viscoelastic fluid flow over an exponentially stretching sheet." Applied Mechanics and Engineering 11, no. 2 (2006): 321.

Sanjayanand, EmmanuelKhan Sujit Kumar. "On heat and mass transfer in a viscoelastic boundary layer flow over an exponentially stretching sheet." International Journal of Thermal Sciences 45, no. 8 (2006): 819-828. https://doi.org/10.1016/j.ijthermalsci.2005.11.002 DOI: https://doi.org/10.1016/j.ijthermalsci.2005.11.002

Sajid, MHayat T. "Influence of thermal radiation on the boundary layer flow due to an exponentially stretching sheet." International Communications in Heat and Mass Transfer 35, no. 3 (2008): 347-356. https://doi.org/ 10.1016/j.icheatmasstransfer.2007.08.006 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2007.08.006

Bidin, BilianaNazar Roslinda. "Numerical solution of the boundary layer flow over an exponentially stretching sheet with thermal radiation." European journal of scientific research 33, no. 4 (2009): 710-717.

Bararnia, H, Gorji M, Domairry G, and Ghotbi Abdoul R. "An analytical study of boundary layer flows on a continuous stretching surface." Acta applicandae mathematicae 106 (2009): 125-133. https://doi.org/10.1007/ s10440-008-9286-3 DOI: https://doi.org/10.1007/s10440-008-9286-3

Okonkwo, Eric C, Wole-Osho Ifeoluwa, Almanassra Ismail W, Abdullatif Yasser M, and Al-Ansari Tareq. "An updated review of nanofluids in various heat transfer devices." Journal of Thermal Analysis and Calorimetry 145 (2021): 2817-2872. https://doi.org/10.1007/s10973-020-09760-2 DOI: https://doi.org/10.1007/s10973-020-09760-2

Sivashanmugam, P. "Application of nanofluids in heat transfer." An overview of heat transfer phenomena 16 (2012): https://doi.org/10.5772/52496 DOI: https://doi.org/10.5772/52496

Xuan, YiminLi Qiang. "Heat transfer enhancement of nanofluids." International Journal of heat and fluid flow 21, no. 1 (2000): 58-64. https://doi.org/10.1016/S0142-727X(99)00067-3 DOI: https://doi.org/10.1016/S0142-727X(99)00067-3

Choi, S USEastman Jeffrey A, Enhancing thermal conductivity of fluids with nanoparticles. 1995, Argonne National Lab.(ANL), Argonne, IL (United States). https://www.osti.gov/servlets/purl/196525.

Lee, S, Choi SU-S, Li S, and, and Eastman JA. "Measuring thermal conductivity of fluids containing oxide nanoparticles." (1999): https://doi.org/10.1115/1.2825978 DOI: https://doi.org/10.1115/1.2825978

Li, Shuguang, Faizan M, Ali Farhan, Ramasekhar Gunisetty, Muhammad Taseer, Khalifa Hamiden Abd El-Wahed, and Ahmad Zubair. "Modelling and analysis of heat transfer in MHD stagnation point flow of Maxwell nanofluid over a porous rotating disk." Alexandria Engineering Journal 91 (2024): 237-248. https://doi.org/10.1016/ j.aej.2024.02.002 DOI: https://doi.org/10.1016/j.aej.2024.02.002

Rasheed, Tahir, Hussain Tariq, Anwar Muhammad Tuoqeer, Ali Jazib, Rizwan Komal, Bilal Muhammad, Alshammari Fwzah H, Alwadai Norah, and Almuslem Amani Saleh. "Hybrid nanofluids as renewable and sustainable colloidal suspensions for potential photovoltaic/thermal and solar energy applications." Frontiers in Chemistry 9 (2021): 737033. https://doi.org/10.3389/fchem.2021.737033 DOI: https://doi.org/10.3389/fchem.2021.737033

Bhattad, Atul, Atgur Vinay, Rao Boggarapu Nageswar, Banapurmath NR, Yunus Khan TM, Vadlamudi Chandramouli, Krishnappa Sanjay, Sajjan AM, Shankara R Prasanna, and Ayachit NH. "Review on mono and hybrid nanofluids: preparation, properties, investigation, and applications in IC engines and heat transfer." Energies 16, no. 7 (2023): 3189. https://doi.org/10.3390/en16073189 DOI: https://doi.org/10.3390/en16073189

Devi, SP AnjaliDevi S Suriya Uma. "Numerical investigation of hydromagnetic hybrid Cu–Al2O3/water nanofluid flow over a permeable stretching sheet with suction." International Journal of Nonlinear Sciences and Numerical Simulation 17, no. 5 (2016): 249-257. https://doi.org/10.1515/ijnsns-2016-0037 DOI: https://doi.org/10.1515/ijnsns-2016-0037

Waini, Iskandar, Ishak Anuar, and Pop Ioan. "Hybrid nanofluid flow towards a stagnation point on a stretching/shrinking cylinder." Scientific Reports 10, no. 1 (2020): 9296. https://doi.org/10.1038/s41598-020-66126-2 DOI: https://doi.org/10.1038/s41598-020-66126-2

Waqas, Hassan, Naqvi Syed Muhammad Raza Shah, Alqarni MS, and Muhammad Taseer. "Thermal transport in magnetized flow of hybrid nanofluids over a vertical stretching cylinder." Case Studies in Thermal Engineering 27 (2021): 101219. https://doi.org/10.1016/j.csite.2021.101219 DOI: https://doi.org/10.1016/j.csite.2021.101219

Roy, Nepal Chandra, Saha Litan Kumar, and Sheikholeslami Mohsen. "Heat transfer of a hybrid nanofluid past a circular cylinder in the presence of thermal radiation and viscous dissipation." AIP Advances 10, no. 9 (2020): https://doi.org/10.1063/5.0021258 DOI: https://doi.org/10.1063/5.0021258

Ali, F, Zaib A, Faizan M, Zafar SS, Alkarni Shalan, Shah Nehad Ali, and Chung Jae Dong. "Heat and mass exchanger analysis for Ree-Eyring hybrid nanofluid through a stretching sheet utilizing the homotopy perturbation method." Case Studies in Thermal Engineering 54 (2024): 104014. https://doi.org/10.1016/j.csite.2024.104014 DOI: https://doi.org/10.1016/j.csite.2024.104014

Ali, Farhan, Zaib A, Reddy Srinivas, Alshehri Mansoor H, and Shah Nehad Ali. "Impact of thermal radiative Carreau ternary hybrid nanofluid dynamics in solar aircraft with entropy generation: significance of energy in solar aircraft." Journal of Thermal Analysis and Calorimetry 149, no. 4 (2024): 1495-1513. https://doi.org/10.1007/s10973-023-12734-9 DOI: https://doi.org/10.1007/s10973-023-12734-9

Ahmed, Muhammad Faizan, Ali Farhan, Zafar Syed Sohaib, Reddy C Srivinas, and Aslam Muhammad. "Irreversibility analysis and thermal radiative of Williamson (ZnO+ MOS 2/C 3 H 8 O 2) hybrid nanofluid over a porous surface with a suction effect." Physica Scripta 98, no. 11 (2023): 115237. DOI: https://doi.org/10.1088/1402-4896/acffff

Das, Sanatan, Ali Akram, and Jana Rabindra Nath. "Numerically framing the impact of magnetic field on nanofluid flow over a curved stretching surface with convective heating." World Journal of Engineering 18, no. 6 (2021): 938-947. https://doi.org/10.1108/WJE-11-2020-0587 DOI: https://doi.org/10.1108/WJE-11-2020-0587

Sarkar, SoumitraDas Sanatan. "Gyrotactic microorganisms swimming in magneto-Sutterby-nanofluid over a sliding cylinder set in a Darcy-Forchheimer porous space with Arrhenius kinetics." International Journal of Ambient Energy 45, no. 1 (2024): 2258896. https://doi.org/10.1080/01430750.2023.2258896 DOI: https://doi.org/10.1080/01430750.2023.2258896

Alkasasbeh, Hamzeh, Al Faqih Feras M, and Shoul Abedalrahman S. "Computational simulation of magneto convection flow of williamson hybrid nanofluid with thermal radiation effect." CFD Letters 15, no. 4 (2023): 92-105. https://doi.org/10.37934/cfdl.15.4.92105 DOI: https://doi.org/10.37934/cfdl.15.4.92105

Ahmad, Syakila, Rohni Azizah Mohd, and Pop Ioan. "Blasius and Sakiadis problems in nanofluids." Acta Mechanica 218 (2011): 195-204. https://doi.org/10.1007/s00707-010-0414-6 DOI: https://doi.org/10.1007/s00707-010-0414-6

Published

2024-10-02

How to Cite

Alkasasbeh, H., Hanandeh, F. A. ., Aljunaeidia, B. Z., Al-Olaimat, N. M. ., Alzyout, A. M. ., Khalil, S. A. ., & Mohamed, M. K. A. . (2024). Modeling of Electric MHD Flow of Nanoparticles in a CMC-Water Based Casson Hybrid Nanofluid over a Porous Medium. Journal of Advanced Research in Numerical Heat Transfer, 24(1), 28–44. https://doi.org/10.37934/arnht.24.1.2844

Issue

Section

Articles