Numerical Simulation on Flow and Heat Transfer Characteristics of a Single-loop Oscillating Heat Pipe with Variable Pipe Diameter Ratios
DOI:
https://doi.org/10.37934/arnht.27.1.4565Keywords:
Oscillating heat pipe, Diameter ratio, Heat transfer, Multi-phase flow, VOFAbstract
A three-dimensional numerical model, employing the Volume of Fluid (VOF) method, was developed for a single-loop oscillating heat pipe (OHP) with variable diameters. The investigation explored the impact of varying pipe diameter ratios on flow and heat transfer characteristics at different operational stages under a 40W heat power. The results reveal that the diameter ratio significantly affects the spatial arrangement of the evaporation, adiabatic, and condensation sections in the OHP. In the initial stage, the condensation section displays 15 liquid slugs when the diameter ratio is 1, but this number decreases to fewer than 10 in the same area when the diameter ratio exceeds 1. Comparative to a straight-pipe OHP, configurations with varying diameter ratios exhibit a marginal reduction in the average fluid velocity during the circulation of the working fluid inside the pipe, with the most pronounced velocity decrease occurring at a diameter ratio of 0.8. As the diameter ratio increases to 1.25 and 1.5, the turbulent disturbances in the region where the working fluid flows from the adiabatic section to the evaporation or condensation section intensify, facilitating the temperature exchange within the OHP. During stable operation of the OHP, the frequency of temperature oscillations increases with an increasing diameter ratio, while the amplitude decreases. Among all the cases, the OHP with a diameter ratio of 1.25 has the optimal heat resistance, 1.50K/W. The heat transfer performance of the OHP with a pipe diameter ratio of 0.8 deteriorated, and the thermal resistance increased by 27.6% compared with the straight-pipe OHP.
Downloads
References
Shetty, Divya D., Mohammad Zuber, K. N. Chethan, G. Laxmikant, Irfan Anjum Badruddin Magami, and Chandrakant R. Kini. "Advancements in Battery Thermal Management for High-Energy-Density Lithium-Ion Batteries in Electric Vehicles: A Comprehensive Review." CFD Letters 16, no. 9 (2024): 14-38. https://doi.org/10.37934/cfdl.16.9.1438
Li, Ziyong, Hailiang Luo, Yuguang Jiang, Haichao Liu, Lian Xu, Kunyuan Cao, Hongjie Wu, Peng Gao, and Hong Liu. "Comprehensive review and future prospects on chip-scale thermal management: Core of data center’s thermal management." Applied Thermal Engineering (2024): 123612. https://doi.org/10.1016/j.applthermaleng.2024.123612 DOI: https://doi.org/10.1016/j.applthermaleng.2024.123612
Rahman, SM Imrat, Ali Moghassemi, Ali Arsalan, Laxman Timilsina, Phani Kumar Chamarthi, Behnaz Papari, Gokhan Ozkan, and Christopher S. Edrington. "Emerging trends and challenges in thermal management of power electronic converters: A state of the art review." IEEE Access (2024). https://doi.org/10.1109/ACCESS.2024.3385429 DOI: https://doi.org/10.1109/ACCESS.2024.3385429
Basri, Mahamad Hisyam Mahamad, Zulkhairi Kamaruzaman, Fairosidi Idrus, Norasikin Hussin, and Idris Saad. "Heat Pipe as a Passive Cooling Device for PV Panel Performance Enhancement." Journal of Advanced Research in Applied Sciences and Engineering Technology 28, no. 2 (2022): 190-198. https://doi.org/10.37934/araset.28.2.190198 DOI: https://doi.org/10.37934/araset.28.2.190198
Akachi, Hisateru. "Structure of heat pipe." United States patent, Patent No. 4921041 (1990).
Ayel, Vincent, Maksym Slobodeniuk, Rémi Bertossi, Cyril Romestant, and Yves Bertin. "Flat plate pulsating heat pipes: A review on the thermohydraulic principles, thermal performances and open issues." Applied Thermal Engineering 197 (2021): 117200. https://doi.org/10.1016/j.applthermaleng.2021.117200 DOI: https://doi.org/10.1016/j.applthermaleng.2021.117200
Kim, Wookyoung, and Sung Jin Kim. "Fundamental issues and technical problems about pulsating heat pipes." Journal of Heat Transfer 143, no. 10 (2021): 100803. https://doi.org/10.1115/1.4050077 DOI: https://doi.org/10.1115/1.4051465
Dave, Chirag, Prajwal Dandale, Kushagra Shrivastava, Dashrath Dhaygude, Kavi Rahangdale, and Nilesh More. "A review on pulsating heat pipes: latest research, applications and future scope." Journal of Thermal Engineering 7, no. 3 (2021): 387-408. https://doi.org/10.18186/thermal.878983 DOI: https://doi.org/10.18186/thermal.878983
Cataldo, Filippo, Jackson B. Marcinichen, and John R. Thome. "Mini-scale pulsating heat pipe cooling systems for high-heat-flux electronic equipment." In Journal of Physics: Conference Series, vol. 1868, no. 1, p. 012009. IOP Publishing, 2021. https://doi.org/10.1088/1742-6596/1868/1/012009 DOI: https://doi.org/10.1088/1742-6596/1868/1/012009
Li, Zhi, and Li Jia. "Experimental study on natural convection cooling of LED using a flat-plate pulsating heat pipe." Heat Transfer Research 44, no. 1 (2013). https://doi.org/10.1615/HeatTransRes.2013006479 DOI: https://doi.org/10.1615/HeatTransRes.2012005690
Kavoosi Balotaki, Hassan, and Mohammad Hassan Saidi. "Design and performance of a novel hybrid photovoltaic–thermal collector with pulsating heat pipe (PVTPHP)." Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 43 (2019): 371-381. https://doi.org/10.1007/s40997-018-0164-y DOI: https://doi.org/10.1007/s40997-018-0164-y
Xu, Yanyan, Yanqin Xue, Weihua Cai, Hong Qi, and Qian Li. "Experimental study on performances of flat-plate pulsating heat pipes without and with thermoelectric generators for low-grade waste heat recovery." Applied Thermal Engineering 225 (2023): 120156. https://doi.org/10.1016/j.applthermaleng.2023.120156 DOI: https://doi.org/10.1016/j.applthermaleng.2023.120156
Mahajan, Govinda, Heejin Cho, Scott M. Thompson, Harrison Rupp, and Kevin Muse. "Oscillating heat pipes for waste heat recovery in HVAC systems." In ASME International Mechanical Engineering Congress and Exposition, vol. 57502, p. V08BT10A003. American Society of Mechanical Engineers, 2015. https://doi.org/10.1115/IMECE2015-52720 DOI: https://doi.org/10.1115/IMECE2015-52720
Wu, Ze, Youqiang Xing, Lei Liu, Peng Huang, and Guolong Zhao. "Design, fabrication and performance evaluation of pulsating heat pipe assisted tool holder." Journal of Manufacturing Processes 50 (2020): 224-233. https://doi.org/10.1016/j.jmapro.2019.12.054 DOI: https://doi.org/10.1016/j.jmapro.2019.12.054
Zhu, Liang, Linpei Zhu, and Shuangfeng Wang. "Experimental investigation on rotational oscillating heat pipe for in-wheel motor cooling of urban electric vehicle." International Communications in Heat and Mass Transfer 151 (2024): 107209. https://doi.org/10.1016/j.icheatmasstransfer.2023.107209 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2023.107209
Hongkun, Lu, M. M. Noor, Yu Wenlin, K. Kadirgama, I. A. Badruddin, and S. Kamangar. "Experimental research on heat transfer characteristics of a battery liquid-cooling system with⊥-shaped oscillating heat pipe under pulsating flow." International Journal of Heat and Mass Transfer 224 (2024): 125363. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125363 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2024.125363
Shetty, Divya D., Mohammad Zuber, K. N. Chethan, G. Laxmikant, Irfan Anjum Badruddin Magami, and Chandrakant R. Kini. "Advancements in Battery Thermal Management for High-Energy-Density Lithium-Ion Batteries in Electric Vehicles: A Comprehensive Review." CFD Letters 16, no. 9 (2024): 14-38. https://doi.org/10.37934/cfdl.16.9.1438 DOI: https://doi.org/10.37934/cfdl.16.9.1438
Bastakoti, Durga, Hongna Zhang, Da Li, Weihua Cai, and Fengchen Li. "An overview on the developing trend of pulsating heat pipe and its performance." Applied Thermal Engineering 141 (2018): 305-332. https://doi.org/10.1016/j.applthermaleng.2018.05.121 DOI: https://doi.org/10.1016/j.applthermaleng.2018.05.121
Nazari, Mohammad Alhuyi, Mohammad H. Ahmadi, Roghayeh Ghasempour, Mohammad Behshad Shafii, Omid Mahian, Soteris Kalogirou, and Somchai Wongwises. "A review on pulsating heat pipes: from solar to cryogenic applications." Applied energy 222 (2018): 475-484. https://doi.org/10.1016/j.apenergy.2018.04.020 DOI: https://doi.org/10.1016/j.apenergy.2018.04.020
Pagliarini, Luca, Naoko Iwata, and Fabio Bozzoli. "Pulsating heat pipes: Critical review on different experimental techniques." Experimental Thermal and Fluid Science 148 (2023): 110980. https://doi.org/10.1016/j.expthermflusci.2023.110980 DOI: https://doi.org/10.1016/j.expthermflusci.2023.110980
Khandekar, Sameer, Pradipta K. Panigrahi, Frédéric Lefèvre, and Jocelyn Bonjour. "Local hydrodynamics of flow in a pulsating heat pipe: a review." Frontiers in Heat Pipes 1, no. 2 (2010): 023003. https://doi.org/10.5098/fhp.v1.2.3003 DOI: https://doi.org/10.5098/fhp.v1.2.3003
Noh, Hyung Yun, and Sung Jin Kim. "Numerical simulation of pulsating heat pipes: Parametric investigation and thermal optimization." Energy conversion and management 203 (2020): 112237. https://doi.org/10.1016/j.enconman.2019.112237 DOI: https://doi.org/10.1016/j.enconman.2019.112237
Lee, Jungseok, and Sung Jin Kim. "Effect of channel geometry on the operating limit of micro pulsating heat pipes." International Journal of Heat and Mass Transfer 107 (2017): 204-212. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.063 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.036
Pietrasanta, Luca, Daniele Mangini, Davide Fioriti, Nicolas Miche, Manolia Andredaki, Anastasios Georgoulas, Lucio Araneo, and Marco Marengo. "A single Loop pulsating heat pipe in varying gravity conditions: experimental results and numerical simulations." In The 16th International Heat Transfer Conference: IHTC-16, pp. 4877-4884. Begell House, 2018. https://doi.org/10.1615/IHTC16.her.023891 DOI: https://doi.org/10.1615/IHTC16.her.023891
Opalski, Marcin, Cezary Czajkowski, Przemysław Błasiak, Andrzej Ireneusz Nowak, Jun Ishimoto, and Sławomir Pietrowicz. "Comprehensive numerical modeling analysis and experimental validation of a multi-turn pulsating heat pipe." International Communications in Heat and Mass Transfer 159 (2024): 107990. https://doi.org/10.1016/j.icheatmasstransfer.2024.107990 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2024.107990
Mushan, Sagar G., and Vaibhav N. Deshmukh. "A review of pulsating heat pipes encompassing their dominant factors, flexible structure, and potential applications." International Journal of Green Energy (2024): 1-38. https://doi.org/10.1080/15435075.2024.2319229 DOI: https://doi.org/10.1080/15435075.2024.2319229
Xie, Fubo, Xinlong Li, Peng Qian, Zizhen Huang, and Minghou Liu. "Effects of geometry and multisource heat input on flow and heat transfer in single closed-loop pulsating heat pipe." Applied Thermal Engineering 168 (2020): 114856. https://doi.org/10.1016/j.applthermaleng.2019.114856 DOI: https://doi.org/10.1016/j.applthermaleng.2019.114856
Wang, Jiansheng, Yu Pan, and Xueling Liu. "Investigation on start-up and thermal performance of the single-loop pulsating heat pipe with variable diameter." International Journal of Heat and Mass Transfer 180 (2021): 121811. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121811 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2021.121811
Kang, Zhanxiao, Dahua Shou, and Jintu Fan. "Numerical study of a novel Single-loop pulsating heat pipe with separating walls within the flow channel." Applied Thermal Engineering 196 (2021): 117246. https://doi.org/10.1016/j.applthermaleng.2021.117246 DOI: https://doi.org/10.1016/j.applthermaleng.2021.117246
Kang, Zhanxiao, Dahua Shou, and Jintu Fan. "Numerical study of single-loop pulsating heat pipe with porous wicking layer." International Journal of Thermal Sciences 179 (2022): 107614. https://doi.org/10.1016/j.ijthermalsci.2022.107614 DOI: https://doi.org/10.1016/j.ijthermalsci.2022.107614
Fallahzadeh, Rasoul, Latif Aref, Fabio Bozzoli, Luca Cattani, and Hormoz Gholami. "A novel triple-diameter pulsating heat pipe: Flow regimes and heat transfer performance." Thermal Science and Engineering Progress 42 (2023): 101902. https://doi.org/10.1016/j.tsep.2023.101902 DOI: https://doi.org/10.1016/j.tsep.2023.101902
Cheng, Po-Shen, and Shwin-Chung Wong. "Detailed visualization experiments on the start-up process and stable operation of pulsating heat pipes: Effects of internal diameter." International Journal of Heat and Fluid Flow 106 (2024): 109325. https://doi.org/10.1016/j.ijheatfluidflow.2024.109325 DOI: https://doi.org/10.1016/j.ijheatfluidflow.2024.109325
Liu, Yuewen, Dan Dan, Mingshan Wei, Siyu Zheng, and Jixian Sun. "Numerical investigation on the start-up and heat transfer performance of dual-diameter pulsating heat pipes." Applied Thermal Engineering 236 (2024): 121709. https://doi.org/10.1016/j.applthermaleng.2024.121709 DOI: https://doi.org/10.1016/j.applthermaleng.2023.121709
Lee, W. H., and R. W. Lyczkowski. "The basic character of five two‐phase flow model equation sets." International journal for numerical methods in fluids 33, no. 8 (2000): 1075-1098. https://doi.org/10.1002/1097-0363(20000830)33:8<1075::AID-FLD43>3.0.CO;2-5 DOI: https://doi.org/10.1002/1097-0363(20000830)33:8<1075::AID-FLD43>3.0.CO;2-5
Hirt, Cyril W., and Billy D. Nichols. "Volume of fluid (VOF) method for the dynamics of free boundaries." Journal of computational physics 39, no. 1 (1981): 201-225. https://doi.org/10.1016/0021-9991(81)90145-5 DOI: https://doi.org/10.1016/0021-9991(81)90145-5
Choi, Benjamin Y., and Markus Bussmann. "A piecewise linear approach to volume tracking a triple point." International journal for numerical methods in fluids 53, no. 6 (2007): 1005-1018. https://doi.org/10.1002/fld.1317 DOI: https://doi.org/10.1002/fld.1317
Shi, Xiaojun, Bangtao Yin, Gangqing Chen, Xiaodong Zhang, and Xuesong Mei. "Numerical study on two-phase flow and heat transfer characteristics of loop rotating heat pipe for cooling motorized spindle." Applied Thermal Engineering 192 (2021): 116927. https://doi.org/10.1016/j.applthermaleng.2021.116927 DOI: https://doi.org/10.1016/j.applthermaleng.2021.116927
Zhang, Yuwen, and Amir Faghri. "Advances and unsolved issues in pulsating heat pipes." Heat transfer engineering 29, no. 1 (2008): 20-44. https://doi.org/10.1080/01457630701677114 DOI: https://doi.org/10.1080/01457630701677114
Wang, Jiansheng, He Ma, and Qiang Zhu. "Effects of the Evaporator and Condenser Length on the Performance of Pulsating Heat Pipes." Applied Thermal Engineering 91 (2015). https://doi.org/10.1016/j.applthermaleng.2015.08.106 DOI: https://doi.org/10.1016/j.applthermaleng.2015.08.106
Xu, J. L., Y. X. Li, and T. N. Wong. "High speed flow visualization of a closed loop pulsating heat pipe." International Journal of Heat and Mass Transfer 48, no. 16 (2005): 3338-3351. https://doi.org/10.1016/j.ijheatmasstransfer.2005.02.034 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2005.02.034
Ling, Yun-Zhi, Zhang, Xiao-Song, and Wang, Xiaolin. "Study of Flow Characteristics of an Oscillating Heat Pipe." Applied Thermal Engineering 160 (2019): 113995. https://doi.org/10.1016/j.applthermaleng.2019.113995 DOI: https://doi.org/10.1016/j.applthermaleng.2019.113995
Fritz, Willy. "Numerical simulation of the peculiar subsonic flow-field about the VFE-2 delta wing with rounded leading edge." Aerospace Science and Technology 24, no. 1 (2013): 45-55. https://doi.org/10.1016/j.ast.2012.02.006 DOI: https://doi.org/10.1016/j.ast.2012.02.006
Shimokusu, Trevor J., Drolen, Bruce, Wilson, Corey, Didion, Jeffrey, and Wehmeyer, Geoff. "Strain Gauge Measurements of an Oscillating Heat Pipe from Startup to Stable Operation." Applied Thermal Engineering 233 (2023): 121118. https://doi.org/10.1016/j.applthermaleng.2023.121118 DOI: https://doi.org/10.1016/j.applthermaleng.2023.121118
Qian, Ning, Marco Marengo, Jiajia Chen, Yucan Fu, Jingzhou Zhang, and Jiuhua Xu. “Heat Transfer and Temperature Characteristics of Single-Loop Oscillating Heat Pipe under Axial-Rotation Conditions.” International Journal of Heat and Mass Transfer 197(2022): 123308. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123308 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2022.123308
E, Jiaqiang, Zhao, Xiaohuan, Deng, Yuanwang, and Zhu, Hao. "Pressure Distribution and Flow Characteristics of Closed Oscillating Heat Pipe during the Starting Process at Different Vacuum Degrees." Applied Thermal Engineering 93 (2016): 166-173. https://doi.org/10.1016/j.applthermaleng.2015.09.060 DOI: https://doi.org/10.1016/j.applthermaleng.2015.09.060
Nerella, Santhi Sree, Panitapu, Bhramara, and Nakka, Sudheer V V S. "Fluid Flow Analysis in a Closed Loop Pulsating Heat Pipe - Simulation Study." Materials Today: Proceedings 65 (2022): 3558–3566. https://doi.org/10.1016/j.matpr.2022.06.148 DOI: https://doi.org/10.1016/j.matpr.2022.06.148
Abdelnabi, Mohamed, Ewing, Dan, and Ching, Chan Y. "Onset and Performance of a Two Layer Oscillating Heat Pipe in a Heat Spreader." Thermal Science and Engineering Progress 46 (2023): 102217. https://doi.org/10.1016/j.tsep.2023.102217 DOI: https://doi.org/10.1016/j.tsep.2023.102217
Pouryoussefi, Sam Mohamad Hassan, and Sohrab Gholamhosein Pouryoussefi. "Numerical study of flow visualization and thermal performance for pulsating heat pipes." Journal of Aerospace Science and Technology 15, no. 2 (2022): 17-24. https://doi.org/10.22034/jast.2022.346070.1119