Thermal and Flow Characteristics of Alumina Nanofluids in Microfluidic Systems: A Low-Concentration Study
DOI:
https://doi.org/10.37934/arnht.28.1.131144Keywords:
Microfluidic technologies, Heat transfer, Thermal management, Alumina (Al₂O₃)Abstract
Microfluidic technologies and nanofluids represent a synergistic combination with significant potential for enhancing heat transfer and thermal management applications. This study investigates the thermal and flow characteristics of a 0.001 wt.% alumina (Al₂O₃)-water nanofluid within a custom-designed serpentine microfluidic channel. The nanofluid was prepared and characterized for its thermal conductivity, viscosity, specific heat, and density. Experimental microfluidic studies, supplemented by numerical simulations, were conducted to evaluate the fluid's behavior under controlled conditions. Results indicated a slight increase in thermal conductivity for the Al₂O₃ nanofluid compared to pure water, with increments ranging from 0.16% at 20°C to 0.30% at 80°C, attributed to enhanced Brownian motion of the nanoparticles. Viscosity measurements revealed marginal increases, suggesting minimal impact on fluid flow dynamics. The microfluidic experiments demonstrated a consistent pressure gradient and laminar flow regime, essential for precise control and efficient thermal management. Temperature contours showed effective heat dissipation, with a steady thermal gradient from the inlet to the outlet. The study concludes that low-concentration Al₂O₃ nanofluids can enhance thermal performance in microfluidic systems without significantly affecting flow characteristics, making them suitable for applications requiring efficient heat dissipation, such as electronic cooling and chemical reactions. These findings provide a foundation for future research into higher nanoparticle concentrations and different base fluids, aimed at optimizing the thermal and flow properties of nanofluids in microfluidic environments. The integration of nanofluids with microfluidic technologies holds promise for advancing the performance and reliability of next-generation thermal management systems.
Downloads
References
Ferreira, Mariana, Violeta Carvalho, João Ribeiro, Rui A. Lima, Senhorinha Teixeira, and Diana Pinho. "Advances in microfluidic systems and numerical modeling in biomedical applications: a review." Micromachines 15, no. 7 (2024): 873. https://doi.org/10.3390/mi15070873 DOI: https://doi.org/10.3390/mi15070873
Lei, Xuehui, Weiwu Ye, F. Safdarin, and Sh Baghaei. "Microfluidics devices for sports: A review on technology for biomedical application used in fields such as biomedicine, drug encapsulation, preparation of nanoparticles, cell targeting, analysis, diagnosis, and cell culture." Tissue and Cell 87 (2024): 102339. https://doi.org/10.1016/j.tice.2024.102339 DOI: https://doi.org/10.1016/j.tice.2024.102339
Wong, Whui Dhong, Mohd Fadhil Majnis, Chin Wei Lai, Suresh Sagadevan, and Nurhidayatullaili Muhd Julkapli. "Enhancement of mixing and reaction efficiency of various fluids applications at different microfluidic configuration and design." Chemical Engineering and Processing-Process Intensification (2024): 109729. https://doi.org/10.1016/j.cep.2024.109729 DOI: https://doi.org/10.1016/j.cep.2024.109729
Samylingam, Lingenthiran, Navid Aslfattahi, Chee Kuang Kok, Kumaran Kadirgama, Norazlianie Sazali, Michal Schmirler, Devarajan Ramasamy, Wan Sharuzi Wan Harun, Mahendran Samykano, and A. S. Veerendra. "Green Engineering with Nanofluids: Elevating Energy Efficiency and Sustainability." Journal of Advanced Research in Micro and Nano Engineering 16, no. 1 (2024): 19-34. https://doi.org/10.37934/armne.16.1.1934 DOI: https://doi.org/10.37934/armne.16.1.1934
Samylingam, Lingenthiran, Navid Aslfattahi, Chee Kuang Kok, Kumaran Kadirgama, Norazlianie Sazali, Kia Wai Liew, Michal Schmirler et al., "Enhancing Lubrication Efficiency and Wear Resistance in Mechanical Systems through the Application of Nanofluids: A Comprehensive Review." Journal of Advanced Research in Micro and Nano Engineering 16, no. 1 (2024): 1-18. https://doi.org/10.37934/armne.16.1.118 DOI: https://doi.org/10.37934/armne.16.1.118
Muthusamy, Y., K. Kadirgama, M. M. Rahman, D. Ramasamy, and K. V. Sharma. "Wear analysis when machining AISI 304 with ethylene glycol/TiO 2 nanoparticle-based coolant." The International Journal of Advanced Manufacturing Technology 82 (2016): 327-340. https://doi.org/10.1007/s00170-015-7360-3 DOI: https://doi.org/10.1007/s00170-015-7360-3
Souza, Reinaldo R., Inês M. Gonçalves, Raquel O. Rodrigues, Graca Minas, J. M. Miranda, Antonio LN Moreira, Rui Lima, Goncalo Coutinho, J. E. Pereira, and Ana S. Moita. "Recent advances on the thermal properties and applications of nanofluids: From nanomedicine to renewable energies." Applied Thermal Engineering 201 (2022): 117725. https://doi.org/10.1016/j.applthermaleng.2021.117725 DOI: https://doi.org/10.1016/j.applthermaleng.2021.117725
Ohenhen, Peter Efosa, Onyinyechukwu Chidolue, Aniekan Akpan Umoh, Bright Ngozichukwu, Adetomilola Victoria Fafure, Valentine Ikenna Ilojianya, and Kenneth Ifeanyi Ibekwe. "Sustainable cooling solutions for electronics: A comprehensive review: Investigating the latest techniques and materials, their effectiveness in mechanical applications, and associated environmental benefits." World Journal of Advanced Research and Reviews 21, no. 1 (2024): 957-972. DOI: https://doi.org/10.30574/wjarr.2024.21.1.0111
Kumar, Raj, Daeho Lee, Ümit Ağbulut, Sushil Kumar, Sashank Thapa, Abhishek Thakur, R. D. Jilte, C. Ahamed Saleel, and Saboor Shaik. "Different energy storage techniques: recent advancements, applications, limitations, and efficient utilization of sustainable energy." Journal of Thermal Analysis and Calorimetry 149, no. 5 (2024): 1895-1933. https://doi.org/10.1007/s10973-023-12831-9 DOI: https://doi.org/10.1007/s10973-023-12831-9
Narvaez, Javier A., Hugh Thornburg, Markus P. Rumpfkeil, and Robert J. Wilkens. "Computational modeling of a microchannel cold plate: Pressure, velocity, and temperature profiles." International Journal of Heat and Mass Transfer 78 (2014): 90-98. https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.006 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.006
Roy, Abin, K. P. Venkitaraj, Pethurajan Vigneshwaran, Shaik Saboor, Erdem Cuce, and Kuldeep K. Saxena. "Enhanced convective heat transfer with Al2O3-water nanofluid in a PCM-based thermal energy storage system." Journal of Energy Storage 97 (2024): 112853. https://doi.org/10.1016/j.est.2024.112853 DOI: https://doi.org/10.1016/j.est.2024.112853
Hussein, A. M., Lingenthiran, K. Kadirgamma, M. M. Noor, and L. K. Aik. "Palm oil based nanofluids for enhancing heat transfer and rheological properties." Heat and Mass Transfer 54 (2018): 3163-3169. https://doi.org/10.1007/s00231-018-2364-9 DOI: https://doi.org/10.1007/s00231-018-2364-9
Samylingam, I., K. Kadirgama, Navid Aslfattahi, L. Samylingam, D. Ramasamy, W. S. W. Harun, M. Samykano, and R. Saidur. "Review on thermal energy storage and eutectic nitrate salt melting point." In IOP Conference Series: Materials Science and Engineering, vol. 1078, no. 1, p. 012034. IOP Publishing, 2021. https://doi.org/10.1088/1757-899X/1078/1/012034 DOI: https://doi.org/10.1088/1757-899X/1078/1/012034
Koo, Junemoo, and Clement Kleinstreuer. "Laminar nanofluid flow in microheat-sinks." International journal of heat and mass transfer 48, no. 13 (2005): 2652-2661. https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.029 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.029
Puliti, Gianluca. "Properties of Gold-Water Nanofluids Using Molecular Dynamics." PhD diss., University of Notre Dame, 2012. DOI: https://doi.org/10.1007/s11051-012-1296-4
Soares, Yago Chamoun F., Dante Daiki Yokoyama, Lidiane Cristina Costa, Josué Marciano de Oliveira Cremonezzi, Hélio Ribeiro, Mônica Feijó Naccache, and Ricardo Jorge E. Andrade. "Multifunctional hexagonal boron nitride dispersions based in xanthan gum for use in drilling fluids." Geoenergy Science and Engineering 221 (2023): 111311. https://doi.org/10.1016/j.petrol.2022.111311 DOI: https://doi.org/10.1016/j.petrol.2022.111311
Shahrul, I. M., I. M. Mahbubul, S. S. Khaleduzzaman, R. Saidur, and M. F. M. Sabri. "A comparative review on the specific heat of nanofluids for energy perspective." Renewable and sustainable energy reviews 38 (2014): 88-98. https://doi.org/10.1016/j.rser.2014.05.081 DOI: https://doi.org/10.1016/j.rser.2014.05.081
Ramachandran, Kaaliarasan, Devarajan Ramasamy, Mahendran Samykano, Lingenthiran Samylingam, Faris Tarlochan, and Gholamhassan Najafi. "Evaluation of specific heat capacity and density for cellulose nanocrystal-based nanofluid." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 51, no. 2 (2018): 169-186.
Vega‐Sánchez, Christopher, and Chiara Neto. "Pressure drop measurements in microfluidic devices: a review on the accurate quantification of interfacial slip." Advanced Materials Interfaces 9, no. 5 (2022): 2101641. https://doi.org/10.1002/admi.202101641 DOI: https://doi.org/10.1002/admi.202101641
Gorbunov, Dmitry, Maria Nenasheva, Gregory Shashkin, Viktor Shapovalov, Petr Shvets, Evgeny Naranov, Anton Maximov, Alexander Guda, and Alexander Soldatov. "Transferring hydroformylation reaction into high-pressure gas-liquid microfluidic systems: key achievements and perspectives." Journal of Industrial and Engineering Chemistry (2024). https://doi.org/10.1016/j.jiec.2024.02.029 DOI: https://doi.org/10.1016/j.jiec.2024.02.029
Azizov, Ilgar, Marcin Dudek, and Gisle Øye. "Studying droplet retention in porous media by novel microfluidic methods." Chemical Engineering Science 248 (2022): 117152. https://doi.org/10.1016/j.ces.2021.117152 DOI: https://doi.org/10.1016/j.ces.2021.117152
Naseri, Mahdi, George P. Simon, and Warren Batchelor. "Development of a paper-based microfluidic system for a continuous high-flow-rate fluid manipulation." Analytical Chemistry 92, no. 10 (2020): 7307-7316. https://doi.org/10.1021/acs.analchem.0c01003 DOI: https://doi.org/10.1021/acs.analchem.0c01003
Sun, Jindi. Quantitative Analysis of Flow Through Permeable Media in Microfluidic Devices. University of Wyoming, 2022.
Xiong, Tong, Guoqiang Liu, Shenjie Huang, Gang Yan, and Jianlin Yu. "Two-phase flow distribution in parallel flow mini/micro-channel heat exchangers for refrigeration and heat pump systems: A comprehensive review." Applied Thermal Engineering 201 (2022): 117820. https://doi.org/10.1016/j.applthermaleng.2021.117820 DOI: https://doi.org/10.1016/j.applthermaleng.2021.117820
Leschziner, Michael A. "Friction-drag reduction by transverse wall motion–a review." Journal of Mechanics 36, no. 5 (2020): 649-663. https://doi.org/10.1017/jmech.2020.31 DOI: https://doi.org/10.1017/jmech.2020.31
Lee, Jing Jei. Studying Droplet Behavior and Capillary flow in Open Microfluidic Channels. University of Washington, 2021.
Ulkir, Osman, Oguz Girit, and Ishak Ertugrul. "Design and Analysis of a Laminar Diffusion‐Based Micromixer with Microfluidic Chip." Journal of Nanomaterials 2021, no. 1 (2021): 6684068. https://doi.org/10.1155/2021/6684068 DOI: https://doi.org/10.1155/2021/6684068
Liu, Suhong, Dariush Bahrami, Rasool Kalbasi, Mehdi Jahangiri, Ye Lu, Xuelan Yang, Shahab S. Band, Kwok-Wing Chau, and Amir Mosavi. "Efficacy of applying discontinuous boundary condition on the heat transfer and entropy generation through a slip microchannel equipped with nanofluid." Engineering Applications of Computational Fluid Mechanics 16, no. 1 (2022): 952-964. https://doi.org/10.1080/19942060.2022.2057591 DOI: https://doi.org/10.1080/19942060.2022.2057591
Foroushani, Sepehr, David Naylor, and John L. Wright. "Heat transfer correlations for laminar free convection in vertical channels with asymmetrically heated isothermal walls." Heat Transfer Engineering (2020). https://doi.org/10.1080/01457632.2018.1558015 DOI: https://doi.org/10.1080/01457632.2018.1558015
Zhang, Xuelai, Zhe Ji, Jifen Wang, and Xin Lv. "Research progress on structural optimization design of microchannel heat sinks applied to electronic devices." Applied Thermal Engineering (2023): 121294. https://doi.org/10.1016/j.applthermaleng.2023.121294 DOI: https://doi.org/10.1016/j.applthermaleng.2023.121294
Cramer, Corson L., Emanuel Ionescu, Magdalena Graczyk-Zajac, Andrew T. Nelson, Yutai Katoh, Jeffery J. Haslam, Lothar Wondraczek et al., "Additive manufacturing of ceramic materials for energy applications: Road map and opportunities." Journal of the European Ceramic Society 42, no. 7 (2022): 3049-3088. https://doi.org/10.1016/j.jeurceramsoc.2022.01.058 DOI: https://doi.org/10.1016/j.jeurceramsoc.2022.01.058
Dos‐Reis‐Delgado, Alejandro A., Andrea Carmona‐Dominguez, Gerardo Sosa‐Avalos, Ivan H. Jimenez‐Saaib, Karen E. Villegas‐Cantu, Roberto C. Gallo‐Villanueva, and Víctor H. Perez‐Gonzalez. "Recent advances and challenges in temperature monitoring and control in microfluidic devices." Electrophoresis 44, no. 1-2 (2023): 268-297. https://doi.org/10.1002/elps.202200162 DOI: https://doi.org/10.1002/elps.202200162
Khater, Asmaa, Osama Abdelrehim, Mehdi Mohammadi, Abdulmajeed Mohamad, and Amir Sanati-Nezhad. "Thermal droplet microfluidics: From biology to cooling technology." TrAC Trends in Analytical Chemistry 138 (2021): 116234. https://doi.org/10.1016/j.trac.2021.116234 DOI: https://doi.org/10.1016/j.trac.2021.116234
Sankad, G. C., G. Durga Priyadarsini, Magda Abd El-Rahman, M. R. Gorji, and Nizar Abdallah Alsufi. "Microfluidics temperature compensation and tracking for drug injection based on mechanically pulsating heat exchanger." Journal of Thermal Analysis and Calorimetry 148, no. 21 (2023): 12059-12070. https://doi.org/10.1007/s10973-023-12520-7 DOI: https://doi.org/10.1007/s10973-023-12520-7
Huang, Yicheng, Xuelian Xiao, Huifang Kang, Jianguo Lv, Rui Zeng, and Jun Shen. "Thermal management of polymer electrolyte membrane fuel cells: A critical review of heat transfer mechanisms, cooling approaches, and advanced cooling techniques analysis." Energy Conversion and Management 254 (2022): 115221. https://doi.org/10.1016/j.enconman.2022.115221 DOI: https://doi.org/10.1016/j.enconman.2022.115221
Khaji, Zahra, and Maria Tenje. "Integrated cooling system for microfluidic PDMS devices used in biological microscopy studies." Journal of Micromechanics and Microengineering 32, no. 8 (2022): 087001. https://doi.org/10.1088/1361-6439/ac7772 DOI: https://doi.org/10.1088/1361-6439/ac7772
Kadirgama, K., L. Samylingam, Navid Aslfattahi, M. Samykano, D. Ramasamy, and R. Saidur. "Experimental investigation on the optical and stability of aqueous ethylene glycol/mxene as a promising nanofluid for solar energy harvesting." In IOP Conference Series: Materials Science and Engineering, vol. 1062, no. 1, p. 012022. IOP Publishing, 2021. https://doi.org/10.1088/1757-899X/1062/1/012022 DOI: https://doi.org/10.1088/1757-899X/1062/1/012022
Yuan, Shuai, Bingyan Jiang, Tao Peng, Qiang Li, and Mingyong Zhou. "An investigation of flow patterns and mixing characteristics in a cross-shaped micromixer within the laminar regime." Micromachines 12, no. 4 (2021): 462. https://doi.org/10.3390/mi12040462 DOI: https://doi.org/10.3390/mi12040462
Gao, Jie, Zhuohuan Hu, Qiguo Yang, Xing Liang, and Hongwei Wu. "Fluid flow and heat transfer in microchannel heat sinks: Modelling review and recent progress." Thermal Science and Engineering Progress 29 (2022): 101203. https://doi.org/10.1016/j.tsep.2022.101203 DOI: https://doi.org/10.1016/j.tsep.2022.101203
Liu, Lin, Ziyong Cao, Chao Xu, Ling Zhang, and Te Sun. "Investigation of fluid flow and heat transfer characteristics in a microchannel heat sink with double-layered staggered cavities." International Journal of Heat and Mass Transfer 187 (2022): 122535. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122535 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2022.122535
Arockiam, Siril, Yu Hsuan Cheng, Piero M. Armenante, and Sagnik Basuray. "Experimental determination and computational prediction of the mixing efficiency of a simple, continuous, serpentine-channel microdevice." Chemical Engineering Research and Design 167 (2021): 303-317. https://doi.org/10.1016/j.cherd.2021.01.022 DOI: https://doi.org/10.1016/j.cherd.2021.01.022