Dual Solutions in Mixed Convection Flow Along Non-Isothermal Inclined Cylinder Containing Gyrotactic Microorganism
Keywords:
Mixed convection, Inclined Cylinder, Non-Isothermal, Gyrotactic Microorganism, Dual SolutionAbstract
The purpose of this research is to present dual solution for combined free and forced convection flow towards a non-isothermal permeable inclined cylinder containing gyrotactic microorganism. Though several researches were done on dual solutions for mixed convection and also along the vertical cylinder for the numerous engineering applications but very few works have done on dual solutions for mixed convection with gyrotactic microorganisms. Two steps are performed here to carry out numerical calculations. Firstly, the governing partial differential equations are simplified into set of coupled non-linear ordinary differential equations using similarity transformations and then solved numerically using bvp4c function from MATLAB. Dual solutions are observed for heat, mass and density of motile microorganism transfer rate and also for velocity, temperature, concentration, and microorganism profile beyond a critical point. The research is reached to excellent argument by comparison in few cases between the results obtained from MATLAB and Maple algorithm. The heat, mass and motile microorganism transfer rate decreases from free to mixed convection regime and then increases to forced convection regime with the influence of different flow control parameters. The results also indicate that dual solutions for different flow profiles exist only in free convection dominated regime.