The Effect of Tortuosity on Wall Shear Stress of Porous Scaffold

Authors

  • Hasan Basri Department of Mechanical Engineering, Faculty of Engineering, Universitas Sriwijaya, Ogan Ilir-30662, South Sumatera, Indonesia
  • Akbar Teguh Prakoso Department of Mechanical Engineering, Faculty of Engineering, Universitas Sriwijaya, Ogan Ilir-30662, South Sumatera, Indonesia
  • Zainal Abidin Department of Mechanical Engineering, Faculty of Engineering, Universitas Sriwijaya, Ogan Ilir-30662, South Sumatera, Indonesia
  • Ardiansyah Syahrom Applied Mechanics and Design, School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia
  • Imam Akbar Department of Mechanical Engineering, Faculty of Engineering, Tridinanti University, Palembang 30129, South Sumatra, Indonesia
  • Dendy Adanta Department of Mechanical Engineering, Faculty of Engineering, Universitas Sriwijaya, Ogan Ilir-30662, South Sumatera, Indonesia

DOI:

https://doi.org/10.37934/cfdl.15.7.6173

Keywords:

Scaffold, Negative Schwarz p, Permeability, Wall shear stress, Tortuosity

Abstract

This study aimed to investigate the effect of morphology on permeability and fluid wall shear stress of porous scaffold. Fluids passing through the scaffold were analyzed using the computational fluid dynamics (CFD) method, and tortuosity was analyzed using the finite-different analysis (FDA) method. Based on the results, the higher the porosity, the higher the permeability. In contrast, by increasing the tortuosity, the permeability decrease. Then, control curvature in the negative Schwarz p design has the potential to increase the permeability, consequently, decrease the specific surface area. Therefore, the design negative Schwarz p was proposed met the requirements for a good implant which the permeability value was in the range of trabecular bone.

Author Biographies

Hasan Basri, Department of Mechanical Engineering, Faculty of Engineering, Universitas Sriwijaya, Ogan Ilir-30662, South Sumatera, Indonesia

hasan_basri@unsri.ac.id

Akbar Teguh Prakoso, Department of Mechanical Engineering, Faculty of Engineering, Universitas Sriwijaya, Ogan Ilir-30662, South Sumatera, Indonesia

prakoso@unsri.ac.id

Zainal Abidin, Department of Mechanical Engineering, Faculty of Engineering, Universitas Sriwijaya, Ogan Ilir-30662, South Sumatera, Indonesia

zainalabidin@ft.unsri.ac.id

Ardiansyah Syahrom, Applied Mechanics and Design, School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia

ardi@utm.my

Imam Akbar, Department of Mechanical Engineering, Faculty of Engineering, Tridinanti University, Palembang 30129, South Sumatra, Indonesia

imam_akbar@gmailx.com

Dendy Adanta, Department of Mechanical Engineering, Faculty of Engineering, Universitas Sriwijaya, Ogan Ilir-30662, South Sumatera, Indonesia

dendyadanta@ymail.com

References

Marinozzi, Franco, Fabiano Bini, and Andrea Marinozzi. "Evidence of entropic elasticity of human bone trabeculae at low strains." Journal of biomechanics 44, no. 5 (2011): 988-991. https://doi.org/10.1016/j.jbiomech.2010.11.030

Marinozzi, Franco, Fabiano Bini, and Andrea Marinozzi. "Water uptake and swelling in single trabeculæ from human femur head." Biomatter 4, no. 1 (2014): e28237. https://doi.org/10.4161/biom.28237

Gudekote, Manjunatha, and Rajashekhar Choudhari. "Slip effects on peristaltic transport of Casson fluid in an inclined elastic tube with porous walls." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 43, no. 1 (2018): 67-80.

Marinozzi, Franco, Fabiano Bini, Annalisa De Paolis, Francesca Zuppante, Rossella Bedini, and Andrea Marinozzi. "A finite element analysis of altered load distribution within femoral head in osteoarthritis." Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 3, no. 2 (2015): 84-90. https://doi.org/10.1080/21681163.2013.869185

Marinozzi, Franco, Fabiano Bini, Annalisa De Paolis, Ramona De Luca, and Andrea Marinozzi. "Effects of hip osteoarthritis on mechanical stimulation of trabecular bone: a finite element study." Journal of Medical and Biological Engineering 35 (2015): 535-544. https://doi.org/10.1007/s40846-015-0061-4

Roque, Waldir L., and Fabiano G. Wolf. "Computing the tortuosity of cancellous bone cavity network through fluid velocity field." In XXIV Brazilian Congress on Biomedical Engineering-CBEB, vol. 2014. 2014.

Bobbert, F. S. L., and A. A. Zadpoor. "Effects of bone substitute architecture and surface properties on cell response, angiogenesis, and structure of new bone." Journal of Materials Chemistry B 5, no. 31 (2017): 6175-6192. https://doi.org/10.1039/C7TB00741H

Karageorgiou, Vassilis, and David Kaplan. "Porosity of 3D biomaterial scaffolds and osteogenesis." Biomaterials 26, no. 27 (2005): 5474-5491. https://doi.org/10.1016/j.biomaterials.2005.02.002

David, Bertrand, Dominique Bonnefont-Rousselot, Karim Oudina, Marie-Christelle Degat, Mickael Deschepper, Véronique Viateau, Morad Bensidhoum, Christian Oddou, and Hervé Petite. "A perfusion bioreactor for engineering bone constructs: an in vitro and in vivo study." Tissue Engineering Part C: Methods 17, no. 5 (2011): 505-516. https://doi.org/10.1089/ten.tec.2010.0468

Ahsan, Tabassum, and Robert M. Nerem. "Fluid shear stress promotes an endothelial-like phenotype during the early differentiation of embryonic stem cells." Tissue Engineering Part A 16, no. 11 (2010): 3547-3553. https://doi.org/10.1089/ten.tea.2010.0014

Sargent, Carolyn Y., Geoffrey Y. Berguig, Melissa A. Kinney, Luke A. Hiatt, Richard L. Carpenedo, R. Eric Berson, and Todd C. McDevitt. "Hydrodynamic modulation of embryonic stem cell differentiation by rotary orbital suspension culture." Biotechnology and bioengineering 105, no. 3 (2010): 611-626. https://doi.org/10.1002/bit.22578

Adamo, Luigi, Olaia Naveiras, Pamela L. Wenzel, Shannon McKinney-Freeman, Peter J. Mack, Jorge Gracia-Sancho, Astrid Suchy-Dicey et al., "Biomechanical forces promote embryonic haematopoiesis." Nature 459, no. 7250 (2009): 1131-1135. https://doi.org/10.1038/nature08073

Delaine-Smith, Robin M., and Gwendolen C. Reilly. "Mesenchymal stem cell responses to mechanical stimuli." Muscles, ligaments and tendons journal 2, no. 3 (2012): 169.

Jamali, Muhammad Sabaruddin Ahmad, Zuhaila Ismail, and Norsarahaida Saidina Amin. "Effect of Different Types of Stenosis on Generalized Power Law Model of Blood Flow in a Bifurcated Artery." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 87, no. 3 (2021): 172-183. https://doi.org/10.37934/arfmts.87.3.172183

Chen, Ying, Shaoxiang Zhang, Jianan Li, Yang Song, Changli Zhao, and Xiaonong Zhang. "Dynamic degradation behavior of MgZn alloy in circulating m-SBF." Materials Letters 64, no. 18 (2010): 1996-1999. https://doi.org/10.1016/j.matlet.2010.06.011

Voronov, Roman, Samuel VanGordon, Vassilios I. Sikavitsas, and Dimitrios V. Papavassiliou. "Computational modeling of flow-induced shear stresses within 3D salt-leached porous scaffolds imaged via micro-CT." Journal of biomechanics 43, no. 7 (2010): 1279-1286. https://doi.org/10.1016/j.jbiomech.2010.01.007

Markhoff, Jana, Jan Wieding, Volker Weissmann, Juliane Pasold, Anika Jonitz-Heincke, and Rainer Bader. "Influence of different three-dimensional open porous titanium scaffold designs on human osteoblasts behavior in static and dynamic cell investigations." Materials 8, no. 8 (2015): 5490-5507. https://doi.org/10.3390/ma8085259

Adanta, Dendy, Mochammad Malik Ibrahim, Dewi Puspita Sari, Imam Syofii, and Muhammad Amsal Ade Saputra. "Application of the Grid Convergency Index Method and Courant Number Analysis for Propeller Turbine Simulation." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 96, no. 2 (2022): 33-41. https://doi.org/10.37934/arfmts.96.2.3341

Castro, A. P. G., R. B. Ruben, S. B. Gonçalves, J. Pinheiro, J. M. Guedes, and P. R. Fernandes. "Numerical and experimental evaluation of TPMS Gyroid scaffolds for bone tissue engineering." Computer methods in biomechanics and biomedical engineering 22, no. 6 (2019): 567-573. https://doi.org/10.1080/10255842.2019.1569638

Mazalan, Mazlee Bin, Mohamad Anis Bin Ramlan, Jennifer Hyunjong Shin, and Toshiro Ohashi. "Effect of geometric curvature on collective cell migration in tortuous microchannel devices." Micromachines 11, no. 7 (2020): 659. https://doi.org/10.3390/mi11070659

Bobbert, F. S. L., K. Lietaert, Ali Akbar Eftekhari, Behdad Pouran, S. M. Ahmadi, Harrie Weinans, and A. A. Zadpoor. "Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties." Acta biomaterialia 53 (2017): 572-584. https://doi.org/10.1016/j.actbio.2017.02.024

Kadir, Mohammed Rafiq Abdul, Ardiyansyah Syahrom, and Andreas Öchsner. "Finite element analysis of idealised unit cell cancellous structure based on morphological indices of cancellous bone." Medical & biological engineering & computing 48 (2010): 497-505. https://doi.org/10.1007/s11517-010-0593-2

Syahrom, Ardiyansyah, Mohammed Rafiq Abdul Kadir, Muhamad Nor Harun, and Andreas Öchsner. "Permeability study of cancellous bone and its idealised structures." Medical engineering & physics 37, no. 1 (2015): 77-86. https://doi.org/10.1016/j.medengphy.2014.11.001

Soufivand, Anahita Ahmadi, Nabiollah Abolfathi, Seyyed Ataollah Hashemi, and Sang Jin Lee. "Prediction of mechanical behavior of 3D bioprinted tissue-engineered scaffolds using finite element method (FEM) analysis." Additive Manufacturing 33 (2020): 101181. https://doi.org/10.1016/j.addma.2020.101181

Truscello, Silvia, Greet Kerckhofs, Simon Van Bael, Grzegorz Pyka, Jan Schrooten, and Hans Van Oosterwyck. "Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study." Acta biomaterialia 8, no. 4 (2012): 1648-1658. https://doi.org/10.1016/j.actbio.2011.12.021

Vetsch, Jolanda R., Ralph Müller, and Sandra Hofmann. "The influence of curvature on three-dimensional mineralized matrix formation under static and perfused conditions: an in vitro bioreactor model." Journal of The Royal Society Interface 13, no. 123 (2016): 20160425. https://doi.org/10.1098/rsif.2016.0425

Rincón-Kohli, Liliana, and Philippe K. Zysset. "Multi-axial mechanical properties of human trabecular bone." Biomechanics and modeling in mechanobiology 8 (2009): 195-208. https://doi.org/10.1007/s10237-008-0128-z

Kaneko, Tadashi S., Jason S. Bell, Marina R. Pejcic, Jamshid Tehranzadeh, and Joyce H. Keyak. "Mechanical properties, density and quantitative CT scan data of trabecular bone with and without metastases." Journal of biomechanics 37, no. 4 (2004): 523-530. https://doi.org/10.1016/j.jbiomech.2003.08.010

Majumdar, S., M. Kothari, P. Augat, D. C. Newitt, T. M. Link, J. C. Lin, T. Lang, Y. Lu, and H. K. Genant. "High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties." Bone 22, no. 5 (1998): 445-454. https://doi.org/10.1016/S8756-3282(98)00030-1

Shim, V. P. W., L. M. Yang, J. F. Liu, and V. S. Lee. "Characterisation of the dynamic compressive mechanical properties of cancellous bone from the human cervical spine." International Journal of Impact Engineering 32, no. 1-4 (2005): 525-540. https://doi.org/10.1016/j.ijimpeng.2005.03.006

Perilli, Egon, Massimiliano Baleani, C. Öhman, Roberta Fognani, Fabio Baruffaldi, and Marco Viceconti. "Dependence of mechanical compressive strength on local variations in microarchitecture in cancellous bone of proximal human femur." Journal of biomechanics 41, no. 2 (2008): 438-446. https://doi.org/10.1016/j.jbiomech.2007.08.003

Teo, J. C. M., K. M. Si-Hoe, J. E. L. Keh, and S. H. Teoh. "Correlation of cancellous bone microarchitectural parameters from microCT to CT number and bone mechanical properties." Materials Science and Engineering: C 27, no. 2 (2007): 333-339. https://doi.org/10.1016/j.msec.2006.05.003

Ford, Catherine M., and Tony M. Keaveny. "The dependence of shear failure properties of trabecular bone on apparent density and trabecular orientation." Journal of biomechanics 29, no. 10 (1996): 1309-1317. https://doi.org/10.1016/0021-9290(96)00062-0

Schoenfeld, C. M., E. P. Lautenschlager, and P. R. Meyer. "Mechanical properties of human cancellous bone in the femoral head." Medical and biological engineering 12 (1974): 313-317. https://doi.org/10.1007/BF02477797

Nauman, Eric A., K. E. Fong, and T. M. Keaveny. "Dependence of intertrabecular permeability on flow direction and anatomic site." Annals of biomedical engineering 27 (1999): 517-524. https://doi.org/10.1114/1.195

Lerebours, Chloe, C. D. L. Thomas, J. G. Clement, P. R. Buenzli, and Peter Pivonka. "The relationship between porosity and specific surface in human cortical bone is subject specific." Bone 72 (2015): 109-117. https://doi.org/10.1016/j.bone.2014.11.016

Van Bael, Simon, Yoke Chin Chai, Silvia Truscello, Maarten Moesen, Greet Kerckhofs, Hans Van Oosterwyck, J-P. Kruth, and J. J. A. B. Schrooten. "The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds." Acta biomaterialia 8, no. 7 (2012): 2824-2834. https://doi.org/10.1016/j.actbio.2012.04.001

Yilgor, Pinar, Rui A. Sousa, Rui L. Reis, Nesrin Hasirci, and Vasif Hasirci. "Effect of scaffold architecture and BMP-2/BMP-7 delivery on in vitro bone regeneration." Journal of Materials Science: Materials in Medicine 21 (2010): 2999-3008. https://doi.org/10.1007/s10856-010-4150-1

Downloads

Published

2023-05-29

How to Cite

Basri, H., Prakoso, A. T., Abidin, Z., Syahrom, A., Akbar, I., & Adanta, D. (2023). The Effect of Tortuosity on Wall Shear Stress of Porous Scaffold. CFD Letters, 15(7), 61–73. https://doi.org/10.37934/cfdl.15.7.6173

Issue

Section

Articles

Most read articles by the same author(s)