Simulation of Heat Transfer during Paraffin And Gallium Melting and Solidification Processes Utilizing Star CCm+
DOI:
https://doi.org/10.37934/cfdl.16.3.3754Keywords:
N-octadecane, Convection, melting, STARCCMAbstract
Energy storage systems are essential as the world works to minimize its dependency on fossil fuel energy for environmental and economic reasons. Because of their high capacity for latent heat storage. The numerical study of benchmark cases of solidification and melting was undertaken, and the results of these investigations are presented in this project. Numerical analysis is conducted to examine the brief solidification process of a pure liquid phase-change material within a rectangular enclosure when natural convection is present. The horizontal boundaries are both taken to be adiabatic, with one vertical barrier maintained at a temperature below the material's melting point and the other above. In this work, a numerical investigation of the melting of wax (namely N-octadecane) is presented. The numerical simulations of the experiments were carried out using STAR CCM+, and the results were compared with the results of other numerical simulations (FLOW 3D). The numerical simulations of gallium melting were carried out with a commercial code, STAR CCM+, which captures the solid-liquid interface with a fixed grid. This software captures the solid-liquid interface for phase change simulations in complex geometries with the enthalpy formulation technique. In addition, it demonstrates that computational fluid mechanics has reached a state of development where it permits reliable flow computations with solidification and melting. Casting with metal melts can be studied to provide information to engineers during the design process of new casting tools. The available simulation tools can also be used to predict existing casting processes and determine the origins of defects. The key findings are as follows: The interface shape during the solidification of gallium from above is always determined in large part by anisotropy in heat conductivity and interface growth morphology. Natural convection in the liquid slows down the rate of melting and adds more complexity to the morphology and transport mechanisms at the interface.
Downloads
References
Wang, Lu, Xiangfei Kong, Jianlin Ren, Man Fan, and Han Li. "Novel hybrid composite phase change materials with high thermal performance based on aluminium nitride and nanocapsules." Energy 238 (2022): 121775. https://doi.org/10.1016/j.energy.2021.121775
Anqi, Ali E., Changhe Li, Hayder A. Dhahad, Kamal Sharma, El-Awady Attia, Anas Abdelrahman, Azheen Ghafour Mohammed, Sagr Alamri, and Ali A. Rajhi. "Effect of combined air cooling and nano enhanced phase change materials on thermal management of lithium-ion batteries." Journal of Energy Storage 52 (2022): 104906. https://doi.org/10.1016/j.est.2022.104906
Abdullah, Mahir Faris, Rozli Zulkifli, Zambri Harun, Shahrir Abdullah, and W. A. Wan Ghopa. "Discussion paper: Effect of the Nanosolution Concentration on a Heated Surface of the Heat Transfer Enhancement using Twin Impingement Jet Mechanism." Int. J. Eng. Technol 7 (2020): 6200-6206.
Faris Abdullah, Mahir, Rozli Zulkifli, Hazim Moria, Asmaa Soheil Najm, Zambri Harun, Shahrir Abdullah, Wan Aizon Wan Ghopa, and Noor Humam Sulaiman. "Assessment of TiO2 Nanoconcentration and Twin Impingement Jet of Heat Transfer Enhancement—A Statistical Approach Using Response Surface Methodology." Energies 14, no. 3 (2021): 595. https://doi.org/10.3390/en14030595
Tyagi, V. V., K. Chopra, R. K. Sharma, A. K. Pandey, S. K. Tyagi, Muhammad Shakeel Ahmad, Ahmet Sarı, and Richa Kothari. "A comprehensive review on phase change materials for heat storage applications: Development, characterization, thermal and chemical stability." Solar Energy Materials and Solar Cells 234 (2022): 111392. https://doi.org/10.1016/j.solmat.2021.111392
Alam, Tabish, and Man-Hoe Kim. "A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications." Renewable and Sustainable Energy Reviews 81 (2018): 813-839. https://doi.org/10.1016/j.rser.2017.08.060
Abdullah, Mahir Faris, Humam Kareem, Rozli Zulkifli, Zambri Harun, Shahrir Abdullah, Wan Aizon, and W. Ghopa Ghopa. "Heat transfer and flow structure of multiple jet impingement mechanisms on a flat plate for turbulent flow." International Journal of Mechanical & Mechatronics Engineering IJMMEIJENS 19, no. 03 (2020).
Abdullah, Mahir Faris, Rozli Zulkifli, Zambri Harun, Shahrir Abdullah, Wan Aizon W. Ghopa, and Ashraf Amer Abbas. "Heat transfer augmentation based on twin impingement jet mechanism." Int. J. Eng. Technol 7, no. 3.17 (2018): 209-214. 209-214.
Faris Abdullah, Mahir, Rozli Zulkifli, Zambri Harun, Shahrir Abdullah, and Wan Aizon Wan Ghopa. "Experimental and numerical simulation of the heat transfer enhancement on the twin impingement jet mechanism." Energies 11, no. 4 (2018): 927. https://doi.org/10.3390/en11040927
Abdullah, Mahir Faris, Rozli Zulkifli, Zambri Harun, Shahrir Abdullah, and Wan Aizon W. Ghopa. "Studying of convective heat transfer over an aluminum flat plate based on twin jets impingement mechanism for different Reynolds number." Int. J. Mech. Mechatron. Eng 17, no. 6 (2017): 16. https://doi.org/10.3390/mi10030176
Faris Abdullah, Mahir, Rozli Zulkifli, Zambri Harun, Shahrir Abdullah, Wan Aizon Wan Ghopa, Asmaa Soheil Najm, and Noor Humam Sulaiman. "Impact of the TiO2 nanosolution concentration on heat transfer enhancement of the twin impingement jet of a heated aluminum plate." Micromachines 10, no. 3 (2019): 176. https://doi.org/10.17576/jkukm-2019-31(1)-17
Zambri Harun. Suang N, J. M. Faizal W. Mahmood, M, F, Abdullah. Eslam Reda. Computational Fluid Dynamics Simulation on the Heat Sink of the Graphics Processing Unit Thermal Management. Jurnul kejuretraan. (2017): 31(1) 139147.
Jalghaf, Humam Kareem, Ali Habeeb Askar, and Mahir Faris Abdullah. "Improvement of heat transfer by nanofluid and magnetic field at constant heat flux on tube." Int. J. Mech. Mechatron. Eng 20 (2020): 110-120.
Abdullah, Mahir Faris, Rozli Zulkifli, Zambri Harun, Shahrir Abdullah, Wan Aizon W. Ghopa, and Ashraf Amer Abbas. "Experimental investigation on comparison of local nusselt number using twin jet impingement mechanism." Int. J. Mech. Mechatron. Eng. IJMME-IJENS 17 (2017): 60-75.
Abdullah, Mahir Faris, Humam Kareem Jalghaf, and Rozli Zulkifli. "A Critical Review of Multiple Impingement Jet Mechanisms for Flow Characteristics and Heat Transfer Augmentation." Vehicle and Automotive Engineering (2022): 374-393. https://doi.org/10.1007/978-3-031-15211-5_32
Jasim, Rasha Abdulrazzak, Wajdi Qasim Hussen, Mahir Faris Abdullah, and Rozli Zulkifli. "Numerical Simulation of Characterization of Hydraulic Jump Over an Obstacle in an Open Channel Flow." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 106, no. 1 (2023): 1-15.https://doi.org/10.37934/arfmts.106.1.115
Yan, Shu-Rong, Mohammad Ali Fazilati, Navid Samani, Hamid Reza Ghasemi, Davood Toghraie, Quyen Nguyen, and Arash Karimipour. "Energy efficiency optimization of the waste heat recovery system with embedded phase change materials in greenhouses: a thermo-economic-environmental study." Journal of Energy Storage 30 (2020): 101445. https://doi.org/10.1016/j.est.2020.101445.
Sadr, Arsalan Nasiri, Masih Shekaramiz, Meysam Zarinfar, Amin Esmaily, Hamidreza Khoshtarash, and Davood Toghraie. "Simulation of mixed-convection of water and nano-encapsulated phase change material inside a square cavity with a rotating hot cylinder." Journal of Energy Storage 47 (2022): 103606. https://doi.org/10.1016/j.est.2021.103606.
Miansari, Mehdi, Mohsen Nazari, Davood Toghraie, and Omid Ali Akbari. "Investigating the thermal energy storage inside a double-wall tank utilizing phase-change materials (PCMs)." Journal of Thermal Analysis and Calorimetry 139 (2020): 2283-2294. https://doi.org/10.1007/s10973-019-08573-2.
Jourabian, Mahmoud, A. Ali Rabienataj Darzi, Omid Ali Akbari, and Davood Toghraie. "The enthalpy-based lattice Boltzmann method (LBM) for simulation of NePCM melting in inclined elliptical annulus." Physica A: Statistical Mechanics and its Applications 548 (2020): 123887. https://doi.org/10.1016/j.physa.2019.123887
Bayat, Milad, Mohammad Reza Faridzadeh, and Davood Toghraie. "Investigation of finned heat sink performance with nano enhanced phase change material (NePCM)." Thermal Science and Engineering Progress 5 (2018): 50-59. https://doi.org/10.1016/j.tsep.2017.10.021
Piasecka, Magdalena, Artur Piasecki, and Norbert Dadas. "Experimental study and CFD modeling of fluid flow and heat transfer characteristics in a mini-channel heat sink using simcenter STAR-CCM+ software." Energies 15, no. 2 (2022): 536. https://doi.org/10.3390/en15020536
Prakash, S. Arun, C. Hariharan, R. Arivazhagan, R. Sheeja, V. Antony Aroul Raj, and R. Velraj. "Review on numerical algorithms for melting and solidification studies and their implementation in general purpose computational fluid dynamic software." Journal of Energy Storage 36 (2021): 102341. https://doi.org/10.1016/j.est.2021.102341
Cinosi, N., S. P. Walker, M. J. Bluck, and R. Issa. "CFD simulation of turbulent flow in a rod bundle with spacer grids (MATIS-H) using STAR-CCM+." Nuclear Engineering and Design 279 (2014): 37-49. https://doi.org/10.1016/j.nucengdes.2014.06.019
Huang, Xinpeng, Cheng Sun, Zhenqian Chen, and Yunsong Han. "Experimental and numerical studies on melting process of phase change materials (PCMs) embedded in open-cells metal foams." International Journal of Thermal Sciences 170 (2021): 107151. https://doi.org/10.1016/j.ijthermalsci.2021.107151
Li, W. Q., Z. G. Qu, YaLing He, and WenQuan Tao. "Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin." Applied Thermal Engineering 37 (2012): 1-9. https://doi.org/10.1016/j.applthermaleng.2011.11.001
Wang, Shimin, Amir Faghri, and Theodore L. Bergman. "Numerical modeling of alternate melting and solidification." Numerical Heat Transfer, Part B: Fundamentals 58, no. 6 (2010): 393-418. https://doi.org/10.1080/10407790.2010.529024
Ho, C. J., and C. H. Chu. "Periodic melting within a square enclosure with an oscillatory surface temperature." International journal of heat and mass transfer 36, no. 3 (1993): 725-733. https://doi.org/10.1016/0017-9310(93)80048-Y
Voller, Vaughan R., P. Felix, and C. R. Swaminathan. "Cyclic phase change with fluid flow." International Journal of Numerical Methods for Heat & Fluid Flow 6, no. 4 (1996): 57-64. https://doi.org/10.1108/09615539610123450
Hosseini, M. J., M. Rahimi, and R. Bahrampoury. "Experimental and computational evolution of a shell and tube heat exchanger as a PCM thermal storage system." International Communications in Heat and Mass Transfer 50 (2014): 128-136. https://doi.org/10.1016/j.icheatmasstransfer.2013.11.008
Chabot, Christian, and Louis Gosselin. "Solid-liquid phase change around a tube with periodic heating and cooling: Scale analysis, numerical simulations and correlations." International Journal of Thermal Sciences 112 (2017): 345-357. https://doi.org/10.1016/j.ijthermalsci.2016.10.017
Rakotondrandisa, Aina, Ionut Danaila, and Luminita Danaila. "Numerical modelling of a melting-solidification cycle of a phase-change material with complete or partial melting." International Journal of Heat and Fluid Flow 76 (2019): 57-71.https://doi.org/10.1016/j.ijheatfluidflow.
Ghoneim, A. "A meshfree interface-finite element method for modelling isothermal solutal melting and solidification in binary systems." Finite Elements in Analysis and Design 95 (2015): 20-41. https://doi.org/10.1016/j.finel.2014.10.002
Vynnycky, Michael, and Shigeo Kimura. "An analytical and numerical study of coupled transient natural convection and solidification in a rectangular enclosure." International Journal of Heat and Mass Transfer 50, no. 25-26 (2007): 5204-5214. https://doi.org/10.1016/j.ijheatmasstransfer.2007.06.036
Shabgard, Hamidreza, Theodore L. Bergman, and Amir Faghri. "Exergy analysis of latent heat thermal energy storage for solar power generation accounting for constraints imposed by long-term operation and the solar day." Energy 60 (2013): 474-484. https://doi.org/10.1016/j.energy.2013.08.020
Saleel, C. A., A. Shaija, and S. Jayaraj. "On simulation of backward facing step flow using immersed boundary method." Am. J. Fluid Dyn 3, no. 2 (2013): 9-19. https://doi.org/10.1260/1759-3093.2.2-3.129
Sharifi, Nourouddin, Theodore L. Bergman, Michael J. Allen, and Amir Faghri. "Melting and solidification enhancement using a combined heat pipe, foil approach." International Journal of Heat and Mass Transfer 78 (2014): 930-941. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.054
Banerjee. S, Kumar. V, Paramasivam. I, Ertun¸c. O, Durst. F, Validation of FLOW 3D with benchmark cases of Solidification and Melting Processes, First Technical Report LSTM (2019): 681/I 21.02.05 Prepared for Sachs Gißerei GmbH,
Muhammad, M. D., O. Badr, and H. Yeung. "Validation of a CFD melting and solidification model for phase change in vertical cylinders." Numerical Heat Transfer, Part A: Applications 68, no. 5 (2015): 501-511. https://doi.org/10.1080/10407782.2014.994432
Galione, P. A., O. Lehmkuhl, J. Rigola, and A. Oliva. "Fixed-grid numerical modeling of melting and solidification using variable thermo-physical properties–Application to the melting of n-Octadecane inside a spherical capsule." International Journal of Heat and Mass Transfer 86 (2015): 721-743. https://doi.org/10.1016/j.ijheatmasstransfer.2015.03.033
Hosseinzadeh, Kh, MA Erfani Moghaddam, A. Asadi, A. R. Mogharrebi, B. Jafari, M. R. Hasani, and D. D. Ganji. "Effect of two different fins (longitudinal-tree like) and hybrid nano-particles (MoS2-TiO2) on solidification process in triplex latent heat thermal energy storage system." Alexandria Engineering Journal 60, no. 1 (2021): 1967-1979. https://doi.org/10.1016/j.aej.2020.12.001
Hosseinzadeh, Kh, MA Erfani Moghaddam, A. Asadi, A. R. Mogharrebi, and D. D. Ganji. "Effect of internal fins along with hybrid nano-particles on solid process in star shape triplex latent heat thermal energy storage system by numerical simulation." Renewable Energy 154 (2020): 497-507. https://doi.org/10.1016/j.renene.2020.03.054
Hosseinzadeh, Kh, A. R. Mogharrebi, A. Asadi, M. Paikar, and D. D. Ganji. "Effect of fin and hybrid nano-particles on solid process in hexagonal triplex latent heat thermal energy storage system." Journal of Molecular Liquids 300 (2020): 112347. https://doi.org/10.1016/j.molliq.2019.112347.
Song, Hyuk-Jin, and Jong-Woon Park. "Validation of Melting Computation Method for Reactor Vessel Ablation under External Reactor Vessel Cooling Conditions." (2015).
Rakotondrandisa, Aina, Ionut Danaila, and Luminita Danaila. "Numerical modelling of a melting-solidification cycle of a phase-change material with complete or partial melting." International Journal of Heat and Fluid Flow 76 (2019): 57-71. https://doi.org/10.1016/j.ijheatfluidflow.2018.11.004
Bergles, Arthur E. "Recent developments in enhanced heat transfer." Heat and mass transfer 47, no. 8 (2011): 1001-1008. https://doi.org/10.1007/s00231-011-0872-y
Sharma, S. Dutt, and Kazunobu Sagara. "Latent heat storage materials and systems: a review." International journal of green energy 2, no. 1 (2005): 1-56. https://doi.org/10.1081/GE-200051299
Ascione, Fabrizio, Nicola Bianco, Rosa Francesca De Masi, Filippo de’Rossi, and Giuseppe Peter Vanoli. "Energy refurbishment of existing buildings through the use of phase change materials: Energy savings and indoor comfort in the cooling season." Applied Energy 113 (2014): 990-1007. https://doi.org/10.1016/j.apenergy.2013.08.045
Rakotondrandisa, Aina, Ionut Danaila, and Luminita Danaila. "Numerical modelling of a melting-solidification cycle of a phase-change material with complete or partial melting." International Journal of Heat and Fluid Flow 76 (2019): 57-71. https://doi.org/10.1016/j.ijheatfluidflow.2018.11.004
Rashid, Farhan Lafta, Alireza Rahbari, Raed Khalid Ibrahem, Pouyan Talebizadehsardari, Ali Basem, Amr Kaood, Hayder I. Mohammed, Mohammed H. Abbas, and Mudhar A. Al-Obaidi. "Review of solidification and melting performance of phase change materials in the presence of magnetic field, rotation, tilt angle, and vibration." Journal of Energy Storage 67 (2023): 107501. https://doi.org/10.1016/j.est.2023.107501.