Improving the Performance of a Forced-flow Desalination Unit using a Vortex Generator

Authors

  • Dan Mugisidi Mechanical Engineering, Faculty of Industrial Technology and Informatics, Universitas Muhammadiyah Prof. Dr HAMKA, Jakarta, Indonesia
  • Oktarina Heriyani Mechanical Engineering, Faculty of Industrial Technology and Informatics, Universitas Muhammadiyah Prof. Dr HAMKA, Jakarta, Indonesia

DOI:

https://doi.org/10.37934/cfdl.16.10.8193

Keywords:

Desalination, solar still, evaporation, vortex generator, condenser

Abstract

Water is a primary need for living creatures, and water scarcity can trigger a crisis. Water scarcity is becoming an issue in Indonesia, especially in coastal village areas, including salt-producing areas. Salt production involves evaporating large amounts of seawater in concentration ponds. Using evaporated seawater as a source of clean water would reduce the risk of water scarcity. Therefore, this study aims to obtain fresh water by condensing water vapour that evaporates in a desalination unit. More specifically, the study uses a vortex generator to increase the rate and efficiency of evaporation in a forced-flow desalination unit. This research was conducted indoors to reduce uncontrollable variables. An evaporation container with a volume of 0.35 m3 was filled with seawater. The rate of evaporation in the desalination unit with a vortex generator was compared to that in a unit without a vortex generator. The results show that the vortex generator leads to faster evaporation. The rate of evaporation with a vortex generator was 13% higher than that without a vortex generator, and the gained output ratio increased 14% with the vortex generator. Therefore, it can be concluded that vortex generators can improve the performance of desalination equipment

Downloads

Download data is not yet available.

Author Biographies

Dan Mugisidi, Mechanical Engineering, Faculty of Industrial Technology and Informatics, Universitas Muhammadiyah Prof. Dr HAMKA, Jakarta, Indonesia

dan.mugisidi@uhamka.ac.id

Oktarina Heriyani, Mechanical Engineering, Faculty of Industrial Technology and Informatics, Universitas Muhammadiyah Prof. Dr HAMKA, Jakarta, Indonesia

oktarina@uhamka.ac.id

References

Schewe, Jacob, Jens Heinke, Dieter Gerten, Ingjerd Haddeland, Nigel W. Arnell, Douglas B. Clark, Rutger Dankers et al., "Multimodel assessment of water scarcity under climate change." Proceedings of the National Academy of Sciences 111, no. 9 (2014): 3245-3250. https://doi.org/10.1073/pnas.1222460110

Sivakumar, Bellie. "Water crisis: from conflict to cooperation—an overview." Hydrological Sciences Journal 56, no. 4 (2011): 531-552. https://doi.org/10.1080/02626667.2011.580747

UNICEF, “Water scarcity,” 2020. Accessed: Aug. 05, 2022.

Pauli, Benjamin J. "The Flint water crisis." Wiley Interdisciplinary Reviews: Water 7, no. 3 (2020): e1420. https://doi.org/10.1002/WAT2.1420

Bond, Nick R., Ryan M. Burrows, Mark J. Kennard, and Stuart E. Bunn. "Water scarcity as a driver of multiple stressor effects." In Multiple stressors in river ecosystems, pp. 111-129. Elsevier, 2019. https://doi.org/10.1016/B978-0-12-811713-2.00006-6

Guntur, G., A. A. Jaziri, A. A. Prihanto, D. M. Arisandi, and A. Kurniawan. "Development of salt production technology using prism greenhouse method." In IOP Conference Series: Earth and Environmental Science, vol. 106, no. 1, p. 012082. IOP Publishing, 2018. https://doi.org/10.1088/1755-1315/106/1/012082

Sartono, Cinthia Morris, Prijadi Soedarsono, and Max Rudolf Muskanonfola. "Konversi tonase air dengan berat garam yang terbentuk di areal pertambakan Tanggultlare Jepara." Management of Aquatic Resources Journal (MAQUARES) 2, no. 3 (2013): 20-26. https://doi.org/10.14710/marj.v2i3.4177

Xu, Jiale, Zizhao Wang, Chao Chang, Benwei Fu, Peng Tao, Chengyi Song, Wen Shang, and Tao Deng. "Solar-driven interfacial desalination for simultaneous freshwater and salt generation." Desalination 484 (2020): 114423. https://doi.org/10.1016/j.desal.2020.114423

Kalogirou, Soteris A. "Solar thermal collectors and applications." Progress in energy and combustion science 30, no. 3 (2004): 231-295. https://doi.org/10.1016/j.pecs.2004.02.001

Kabeel, A. E., and S. A. El-Agouz. "Review of researches and developments on solar stills." Desalination 276, no. 1-3 (2011): 1-12. https://doi.org/10.1016/j.desal.2011.03.042

Rabhi, Kamel, Rached Nciri, Faouzi Nasri, Chaouki Ali, and Habib Ben Bacha. "Experimental performance analysis of a modified single-basin single-slope solar still with pin fins absorber and condenser." Desalination 416 (2017): 86-93. https://doi.org/10.1016/j.desal.2017.04.023

Srivastava, Pankaj K., and S. K. Agrawal. "Experimental and theoretical analysis of single sloped basin type solar still consisting of multiple low thermal inertia floating porous absorbers." Desalination 311 (2013): 198-205. https://doi.org/10.1016/j.desal.2012.11.035

Mugisidi, Dan, Berkah Fajar, Syaiful Syaiful, Tony Utomo, Oktarina Heriyani, Delvis Agusman, and Regita Regita. "Iron Sand as a Heat Absorber to Enhance Performance of a Single-Basin Solar Still." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 70, no. 1 (2020): 125-135. https://doi.org/10.37934/arfmts.70.1.125135

Haddad, Zakaria, Abla Chaker, and Ahmed Rahmani. "Improving the basin type solar still performances using a vertical rotating wick." Desalination 418 (2017): 71-78. https://doi.org/10.1016/j.desal.2017.05.030

Hansen, R. Samuel, C. Surya Narayanan, and K. Kalidasa Murugavel. "Performance analysis on inclined solar still with different new wick materials and wire mesh." Desalination 358 (2015): 1-8. https://doi.org/10.1016/j.desal.2014.12.006

Pal, Piyush, Pankaj Yadav, Rahul Dev, and Dhananjay Singh. "Performance analysis of modified basin type double slope multi–wick solar still." Desalination 422 (2017): 68-82. https://doi.org/10.1016/j.desal.2017.08.009

Sharshir, Swellam W., M. R. Elkadeem, and An Meng. "Performance enhancement of pyramid solar distiller using nanofluid integrated with v-corrugated absorber and wick: an experimental study." Applied Thermal Engineering 168 (2020): 114848. https://doi.org/10.1016/j.applthermaleng.2019.114848

Jani, Hardik K., and Kalpesh V. Modi. "Experimental performance evaluation of single basin dual slope solar still with circular and square cross-sectional hollow fins." Solar Energy 179 (2019): 186-194. https://doi.org/10.1016/j.solener.2018.12.054

El-Sebaii, A. A., and E. El-Bialy. "Advanced designs of solar desalination systems: A review." Renewable and Sustainable Energy Reviews 49 (2015): 1198-1212. https://doi.org/10.1016/j.rser.2015.04.161

Mevada, Dinesh, Hitesh Panchal, Kishor kumar Sadasivuni, Mohammad Israr, M. Suresh, Swapnil Dharaskar, and Hemin Thakkar. "Effect of fin configuration parameters on performance of solar still: a review." Groundwater for Sustainable Development 10 (2020): 100289. https://doi.org/10.1016/j.gsd.2019.100289

Estahbanati, MR Karimi, Amimul Ahsan, Mehrzad Feilizadeh, Khosrow Jafarpur, Seyedeh-Saba Ashrafmansouri, and Mansoor Feilizadeh. "Theoretical and experimental investigation on internal reflectors in a single-slope solar still." Applied energy 165 (2016): 537-547. https://doi.org/10.1016/j.apenergy.2015.12.047

Omara, Z. M., A. E. Kabeel, A. S. Abdullah, and F. A. Essa. "Experimental investigation of corrugated absorber solar still with wick and reflectors." Desalination 381 (2016): 111-116. https://doi.org/10.1016/j.desal.2015.12.001

Tanaka, Hiroshi. "Analyzing the effect of an enlarged flat plate reflector (FPR) on a vertical multiple-effect diffusion solar still’s (VMEDS) performance." Applied Thermal Engineering 142 (2018): 138-147. https://doi.org/10.1016/j.applthermaleng.2018.06.054

Nasri, B., A. Benatiallah, S. Kalloum, and D. Benatiallah. "Improvement of glass solar still performance using locally available materials in the southern region of Algeria." Groundwater for Sustainable Development 9 (2019): 100213. https://doi.org/10.1016/j.gsd.2019.100213

Wirangga, Ristanto, Dan Mugisidi, Adi Tegar Sayuti, and Oktarina Heriyani. "The Impact of Wind Speed on the Rate of Water Evaporation in a Desalination Chamber." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 106, no. 1 (2023): 39-50. https://doi.org/10.37934/arfmts.106.1.3950

Fath, Hassan ES, Samy Elsherbiny, and Ahmad Ghazy. "A naturally circulated humidifying/dehumidifying solar still with a built-in passive condenser." Desalination 169, no. 2 (2004): 129-149. https://doi.org/10.1016/j .desal.2004.08.014

Boutriaa, Abdelouahab, and Ahmed Rahmani. "Thermal modeling of a basin type solar still enhanced by a natural circulation loop." Computers & Chemical Engineering 101 (2017): 31-43. https://doi.org/10.1016/j.compchemeng.2017.02.033

Sellami, M. Hassen, R. Touahir, S. Guemari, and K. Loudiyi. "Use of Portland cement as heat storage medium in solar desalination." Desalination 398 (2016): 180-188. https://doi.org/10.1016/j.desal.2016.07.027

Yang, Jae Sung, Myunggeun Jeong, Yong Gap Park, and Man Yeong Ha. "Numerical study on the flow and heat transfer characteristics in a dimple cooling channel with a wedge-shaped vortex generator." International Journal of Heat and Mass Transfer 136 (2019): 1064-1078. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.072

Fiebig, M. "Vortices, generators and heat transfer." Chemical Engineering Research and Design 76, no. 2 (1998): 108-123. https://doi.org/10.1205/026387698524686

Mugisidi, Dan, Oktarina Heriyani, Pancatatva Hesti Gunawan, and Dwi Apriani. "Performance Improvement of a Forced Draught Cooling Tower Using a Vortex Generator." CFD Letters 13, no. 1 (2021): 45-57. https://doi.org/10.37934/cfdl.13.1.4557

Md Salleh, Mohd Fahmi, Ahmadali Gholami, and Mazlan A. Wahid. "Numerical evaluation of thermal hydraulic performance in fin-and-tube heat exchangers with various vortex generator geometries arranged in common-flow-down or common-flow-up." Journal of Heat Transfer 141, no. 2 (2019): 021801. https://doi.org/10.1115/1.4041832

Kabeel, A. E., Z. M. Omara, and F. A. Essa. "Enhancement of modified solar still integrated with external condenser using nanofluids: An experimental approach." Energy conversion and management 78 (2014): 493-498. https://doi.org/10.1016/j.enconman.2013.11.013

Essa, F. A., Mohamed Abd Elaziz, and Ammar H. Elsheikh. "An enhanced productivity prediction model of active solar still using artificial neural network and Harris Hawks optimizer." Applied Thermal Engineering 170 (2020): 115020. https://doi.org/10.1016/j.applthermaleng.2020.115020

El-Samadony, Y. A. F., A. S. Abdullah, and Z. M. Omara. "Experimental study of stepped solar still integrated with reflectors and external condenser." Experimental heat transfer 28, no. 4 (2015): 392-404. https://doi.org/10.1080/08916152.2014.890964

Al-Hamadani, Ali AF, and S. K. Shukla. "Performance of single slope solar still with solar protected condenser." Distributed Generation & Alternative Energy Journal 28, no. 2 (2013): 6-28. https://doi.org/10.1080/21563306.2013.10677548

Sivaram, P. M., S. Dinesh Kumar, M. Premalatha, T. Sivasankar, and A. Arunagiri. "Experimental and numerical study of stepped solar still integrated with a passive external condenser and its application." Environment, Development and Sustainability 23 (2021): 2143-2171. https://doi.org/10.1007/s10668-020-00667-4

Belhadj, Mohamed Mustapha, Hamza Bouguettaia, Yacine Marif, and Moussa Zerrouki. "Numerical study of a double-slope solar still coupled with capillary film condenser in south Algeria." Energy Conversion and Management 94 (2015): 245-252. https://doi.org/10.1016/j.enconman.2015.01.069

Tiwari, G. N., A. Kupfermann, and Shruti Aggarwal. "A new design for a double-condensing chamber solar still." Desalination 114, no. 2 (1997): 153-164. https://doi.org/10.1016/S0011-9164(98)00007-1

El-Bahi, A., and D. Inan. "Analysis of a parallel double glass solar still with separate condenser." Renewable energy 17, no. 4 (1999): 509-521. https://doi.org/10.1016/S0960-1481(98)00768-X

Xiong, Jianyin, Guo Xie, and Hongfei Zheng. "Experimental and numerical study on a new multi-effect solar still with enhanced condensation surface." Energy conversion and management 73 (2013): 176-185. https://doi.org/10.1016/j.enconman.2013.04.024

Bhardwaj, R., M. V. Ten Kortenaar, and R. F. Mudde. "Maximized production of water by increasing area of condensation surface for solar distillation." Applied energy 154 (2015): 480-490. https://doi.org/10.1016/j.apenergy.2015.05.060

Tiwari, Anil Kr, and G. N. Tiwari. "Effect of the condensing cover's slope on internal heat and mass transfer in distillation: an indoor simulation." Desalination 180, no. 1-3 (2005): 73-88. https://doi.org/10.1016/j,desa1.2004.12.029

Han, Zhimin, Zhiming Xu, and Hongwei Qu. "Parametric study of the particulate fouling characteristics of vortex generators in a heat exchanger." Applied Thermal Engineering 167 (2020): 114735. https://doi.org/10.1016/j.applthermaleng.2019.114735

Dietz, C. F., M. Henze, S. O. Neumann, and Jens von Wolfersdorf. "The effects of vortex structures on heat transfer and flow field behind arrays of vortex generators." Journal of Enhanced Heat Transfer 16, no. 2 (2009). https://doi.org/10.1615/JEnhHeatTransf.v16.i2.60

Nadgire, Anand R., Shivprakash B. Barve, and Prachi K. Ithape. "Experimental investigation and performance analysis of double-basin solar still using CFD techniques." Journal of The Institution of Engineers (India): Series C 101 (2020): 531-539. https://doi.org/10.1007/s40032-020-00561-y

Khare, Vaibhav Rai, Abhay Pratap Singh, Hemant Kumar, and Rahul Khatri. "Modelling and performance enhancement of single slope solar still using CFD." Energy Procedia 109 (2017): 447-455. https://doi.org/10.1016/j.egypro.2017.03.064

S. El-Sebaey, Mahmoud, Asko Ellman, Ahmed Hegazy, and Tarek Ghonim. "Experimental analysis and CFD modeling for conventional basin-type solar still." Energies 13, no. 21 (2020): 5734. https://doi.org/10.3390/en13215734

Yan, Tiantong, Guo Xie, Hongtao Liu, Zhanglin Wu, and Licheng Sun. "CFD investigation of vapor transportation in a tubular solar still operating under vacuum." International Journal of Heat and Mass Transfer 156 (2020): 119917. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119917

Hamad, A., Syed Mohammed Aminuddin Aftab, and Kamarul Arifin Ahmad. "Reducing flow separation in T-junction pipe using vortex generator: CFD study." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 44, no. 1 (2018): 36-46.

Shoeibi, Shahin, Nader Rahbar, Ahad Abedini Esfahlani, and Hadi Kargarsharifabad. "Energy matrices, exergoeconomic and enviroeconomic analysis of air-cooled and water-cooled solar still: Experimental investigation and numerical simulation." Renewable Energy 171 (2021): 227-244. https://doi.org/10.1016/j.renene.2021.02.081

Gnanavel, C., R. Saravanan, and M. Chandrasekaran. "CFD analysis of solar still with PCM." Materials Today: Proceedings 37 (2021): 694-700. https://doi.org/10.1016/j.matpr.2020.05.638

Ramakrishnan, Ramkumar, and Ragupathy Arumugam. "Optimization of operating parameters and performance evaluation of forced draft cooling tower using response surface methodology (RSM) and artificial neural network (ANN)." Journal of Mechanical Science and Technology 26 (2012): 1643-1650. https://doi.org/10.1007/s12206-012-0323-9

Dan Mugisidi, Dan Mugisidi, Abdul Rahman Abdul Rahman, Oktarina Heriyani Oktarina Heriyani, and Pancatatva Hesti Gunawan Pancatatva Hesti Gunawan. "Determination of the convective heat transfer constant (c and n) in a solar still." Jurnal Ilmiah Sains dan Teknologi 11, no. 1 (2021): 1-12. https://doi.org/10.22146/teknosains.50908

Elango, C., N. Gunasekaran, and K. Sampathkumar. "Thermal models of solar still—A comprehensive review." Renewable and Sustainable Energy Reviews 47 (2015): 856-911. https://doi.org/10.1016/j.rser.2015.03.054

Oyakawa, K., Y. Furukawa, T. Taira, I. Senaha, and T. Nagata. "Effects of vortex generators on heat transfer enhancement in a duct." In Experimental Heat Transfer, Fluid Mechanics and Thermodynamics 1993, pp. 633-640. Elsevier, 1993. https://doi.org/10.1016/b978-0-444-81619-1.50075-7

Ali, H. M. "Effect of forced convection inside the solar still on heat and mass transfer coefficients." Energy conversion and management 34, no. 1 (1993): 73-79. https://doi.org/10.1016/0196-8904(93)90009-Y

Kabeel, A. E., and Emad MS El-Said. "Applicability of flashing desalination technique for small scale needs using a novel integrated system coupled with nanofluid-based solar collector." Desalination 333, no. 1 (2014): 10-22. https://doi.org/10.1016/j.desal.2013.11.021

Yu, Jing, Juan Yang, and Weidong Yan. "Characteristics and performance investigation of solar AES system with novel flat-plate collector-evaporator integrated unit capable of salinity wastewater thermal self-storage." Desalination 555 (2023): 116559. https://doi.org/10.1016/j.desal.2023.116559

Yu, Jing, Juan Yang, and Weidong Yan. "Thermodynamic simulation and experiment research of the solar air evaporating separation system for saline wastewater treatment with thermal collector–evaporator integrated unit." Energy Reports 8 (2022): 6707-6728. https://doi.org/10.1016/j.egyr.2022.05.025

Yu, Jing, Sumin Jin, and Yujiang Xia. "Experimental and CFD investigation of the counter-flow spray concentration tower in solar energy air evaporating separation saline wastewater treatment system." International Journal of Heat and Mass Transfer 144 (2019): 118621. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118621

Ali, H. M. "Experimental study on air motion effect inside the solar still on still performance." Energy conversion and management 32, no. 1 (1991): 67-70. https://doi.org/10.1016/0196-8904(91)90144-8

Rahmani, Ahmed, Abdelouahab Boutriaa, and Amar Hadef. "An experimental approach to improve the basin type solar still using an integrated natural circulation loop." Energy conversion and management 93 (2015): 298-308. https://doi.org/10.1016/j.enconman.2015.01.026

Rostamzadeh, Hadi, Amin Shekari Namin, Pejman Nourani, Majid Amidpour, and Hadi Ghaebi. "Feasibility investigation of a humidification-dehumidification (HDH) desalination system with thermoelectric generator operated by a salinity-gradient solar pond." Desalination 462 (2019): 1-18. https://doi.org/10.1016/j.desal.2019.04.001

Yu, Jing, Liang Chen, Sumin Jin, and Weidong Yan. "Performance investigation of the double-stage solar air evaporating separation system for saline wastewater treatment." Desalination 515 (2021): 115194. https://doi.org/10.1016/j.desal.2021.115194

Downloads

Published

2024-05-31

How to Cite

Dan Mugisidi, & Oktarina Heriyani. (2024). Improving the Performance of a Forced-flow Desalination Unit using a Vortex Generator. CFD Letters, 16(10), 81–93. https://doi.org/10.37934/cfdl.16.10.8193

Issue

Section

Articles