Numerical Investigation of Heat Transfer Enhancement in Circular Channel with Variation in Angle of Delta-Winglet Vortex Generator

Authors

  • M Iqbal Farhan Putra Arya Department of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
  • Syaiful Department of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
  • Muchammad Department of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
  • Maria F. Soetanto Aerospace Department of Polytechnic of Bandung, Bandung, Indonesia

DOI:

https://doi.org/10.37934/cfdl.15.3.97111

Keywords:

delta-winglet vortex generator, heat transfer rate, friction factor, thermal–hydraulic performance

Abstract

Vortex generators have been used to enhance heat transfer in numerous industries. Vortex generators improve flow mixing by destroying the thermal boundary layer, which improves heat transfer. This study aimed to improve heat transfer in circular channels by installing delta-winglet vortex generators. Accordingly, delta-winglet vortex generators with different angles – 90°, 105°, 120°, 135°, and 150° – were installed in an in-line arrangement. The k–ω turbulent SST model was applied to Reynolds numbers ranging from 4,000 to 12,000, varied at an interval of 2,000. The results indicated that a delta-winglet vortex generator with an angle of 90° increased heat transfer by 4.05% compared to that with an angle of 150°, while the flow resistance also increased by 7.18%. The delta-winglet vortex generator with an angle of 90° achieved the highest thermal enhancement factor of 2.55, whereas that with an angle of 150° provided the lowest cost–benefit ratio of 0.61.

Downloads

Download data is not yet available.

Author Biographies

M Iqbal Farhan Putra Arya, Department of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia

miqbalfarhanpa@gmail.com

Syaiful, Department of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia

syaiful@lecturer.undip.ac.id

Muchammad, Department of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia

m_mad5373@yahoo.com

Maria F. Soetanto, Aerospace Department of Polytechnic of Bandung, Bandung, Indonesia

mariasoetanto@polban.ac.id

References

Li, L, Du, X., Zhang, Y., Yang. L., and Yang, Y. "Numerical simulation on flow and heat transfer of fin-and-tube heat exchanger with longitudinal vortex generators." International Journal of Thermal Sciences 92 (2015): 85-96. https://doi.org/10.1016/j.ijthermalsci.2015.01.030

Awais, M. and Bhuiyan, A.A. "Enhancement of thermal and hydraulic performance of compact finned-tube heat exchanger using vortex generators (VGs): A parametric study." International Jornal of Thermal Sciences 140 (2019): 154-166. https://doi.org/10.1016/j.ijthermalsci.2019.02.041

Gururatana, S., Prapainop, R., Chuepeng, S., and Skullong, S. "Development of heat transfer performance in tubular heat exchanger with improved NACA0024 vortex generator." Case Studies in Thermal Engineering 26 (2021): 101166. https://doi.org/10.1016/j.csite.2021.101166

Phu, N. M. and Thao, P. B. "Thermohydraulic Performance of a Fin and Inclined Flat Tube Heat Exchanger: A Numerical Analysis." CFD Letters 13, no. 7 (2021): 1-12. https://doi.org/10.37934/cfdl.13.7.112

Fiebig, M., Valencia, A., and Mitra, N.K. "Wing-type vortex generators for fin-and-tube heat exchangers. "Experimental Thermal and Fluid Science 7 (1993): 287-295. https://doi.org/10.1016/0894-1777(93)90052-K

Fiebig, M. "Embedded vortices in internal flow: heat transfer and pressure loss enhancement." International Journal of Heat and Fluid Flow 16 (1995): 376-388. https://doi.org/10.1016/0142-727X(95)00043-P

Fiebig, M. "Vortices, Generators and Heat Transfer." Chemical Engineering Research and Design 76 (1998): 108-123. https://doi.org/10.1205/026387698524686

Mugisidi, D., Heriyani, O., Gunawan, P.H., and Apriani, D. "Performance Improvement of a Forced Draught Cooling Tower Using a Vortex Generator." CFD Letters 13, no. 1 (2021): 45-57. https://doi.org/10.37934/cfdl.13.1.4557

Doori W.H.A.A. "Experiments and Numerical Investigations for Heat Transfer from a Horizontal Plate via Forced Convection Using Pin Fins with Different Hole Numbers." CFD Letters 14, no. 9 (2022): 1-14. https://doi.org/10.37934/cfdl.14.9.114

Tang, L.H., Chu, W.X., Ahmed, N., and Zeng, M. "A new configuration of winglet longitudinal vortex generator to enhance heat transfer in a rectangular channel." Applied Thermal Engineering 104 (2016): 74-84. https://doi.org/10.1016/j.applthermaleng.2016.05.056

Samadifar, M. and Toghraie, D. "Numerical simulation of heat transfer enhancement in a plate-fin heat exchanger using a new type of vortex generators." Applied Thermal Engineering 133 (2018): 671-681. https://doi.org/10.1016/j.applthermaleng.2018.01.062

Da Silva, F.A.S., Dezan, D.J., Pantaleao, A.V., and Salviano, L.O. "Longitudinal vortex generator applied to heat transfer enhancement of a flat plate solar water heater", Applied Thermal Engineering 158 (2019): 113790. https://doi.org/10.1016/j.applthermaleng.2019.113790

Luo, C., Wu, S., Song, K., Hua, L., and Wang, L. "Thermo-hydraulic performance optimization of wavy fin heat exchanger by combining delta winglet vortex generators." Applied Thermal Engineering 163 (2019): 114343. https://doi.org/10.1016/j.applthermaleng.2019.114343

Ke, Z., Chen, C.L., Li, K., Wang, S., and Chen, C.H. "Vortex dynamics and heat transfer of longitudinal vortex generators in a rectangular channel." International Journal of Heat and Mass Transfer 132 (2019): 871-885. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.064

Lin, Z.M., Li, S.F., Liu, C.P., Wang, L.B., and Zhang, Y.H. "Thermal and flow characteristics of a channel formed by aligned round tube bank fins stamped with curve delta-winglet vortex generators." Thermal Science and Engineering Progress 26 (2021): 101113. https://doi.org/10.1016/j.tsep.2021.101113

Luo, L., Zhao, Z., Qiu, D., Wang, S., Wang, Z., and Bengt, S. "An experimental investigation on the thermal augmentation of internal endwall in a two-pass duct using an array of delta-winglet vortex generator pair." International Journal of Heat and Mass Transfer 182 (2022): 122043. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122043

Zhao, Z., Luo, L., Zhou, X., Wang, S., Wang, Z., and Sunden, B. "Analysis of enhanced turbulent heat transfer in a sharp turn channel having novel designed endwall with longitudinal vortex generator." International Communications in Heat and Mass Transfer 131 (2022): 105874. https://doi.org/10.1016/j.icheatmasstransfer.2021.105874

Perez, A.M., Altamirano, C.F.A., and Perez, R.B. "Parametric analysis of the influence of geometric variables of vortex generators on compact louver fin heat exchangers." Thermal Science and Engineering Progress 27 (2022): 101151. https://doi.org/10.1016/j.tsep.2021.101151

Syaiful, Wicaksono, T.A., Tony, M.S.K., Suprihanto, A., and Soetanto, M.F. "Heat transfer intensification with field synergy principle in a fin-and-tube heat exchanger through convex strip installation." Engineering Reports 4 (2022): 12510. https://doi.org/10.1002/eng2.12510

Tian, M.W., Khorasani, S., Moria, H., Pourhedayat, S., Dizaji, H.S. "Profit and efficiency boost of triangular vortex-generators by novel techniques." International Journal of Heat and Mass Transfer 156 (2020): 119842. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119842

Syaiful, Ayutasari, A., Soetanto, M.F., Siswantara, A.I., and Bae, M.W. "Thermo-hydrodynamics Performance Analysis of Fluid Flow through Concave Delta Winglet Vortex Generators by Numerical Simulation." International Journal of Technology 8 (2017): 1276-1285. https://doi.org/10.14716/ijtech.v8i7.706

Syaiful, Hendraswari, M.P., Tony, M.S.K., and Soetanto, M.F. "Heat Transfer Enhancement inside Rectangular Channel by Means of Vortex Generated by Perforated Concave Rectangular Winglets." Fluids 6 (2021): 1-14. https://doi.org/10.3390/fluids6010043

Hamad, A., Aftab, S.M.A., and Ahmad, K.A. "Reducing Flow Separation in T-Junction Pipe Using Vortex Generator: CFD Study." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 44, no. 1 (2018): 36-46.

Qjan, Z., Wang, Q., and Cheng, J. "Analysis of heat and resistance performance of plate fin-and-tube heat exchanger with rectangle-winglet vortex generator." International Journal of Heat and Mass Transfer 124 (2018): 1198-1211. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.037

Awais, M. and Bhuiyan, A.A. "Heat transfer enhancement using different types of vortex generators (VGs): A review on experimental and numerical activities." Thermal Science and Engineering Progress 5 (2018): 524-545. https://doi.org/10.1016/j.tsep.2018.02.007

Li, M.J., Zhou, W.J., Zhang, J.F., Fan, J.F., He, Y.L., and Tao, W.Q. "Heat transfer and pressure performance of a plain fin with radiantly arranged winglets around each tube in fin-and-tube heat transfer surface." International Journal of Heat and Mass Transfer 70 (2014): 734-744. https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.024

Syaiful, Wahyuni, T., Yunianto, B., and Sinaga, N. "Evaluation of Vortex Generators in the Heat Transfer Improvement of Airflow through an In-Line Heated Tube Arrangement." Fluids 6 (2021): 1-17. https://doi.org/10.3390/fluids6100344

Sun, Z., Zhang, K., Li, W., Chen, Q., and Zhen, N. "Investigations of the turbulent thermal-hydraulic performance in circular heat exchanger tubes with multiple rectangular winglet vortex generators." Applied Thermal Engineering 168 (2020): 114838. https://doi.org/10.1016/j.applthermaleng.2019.114838

Manjunath, M.S. and Fernandes, D.V. "Numerical investigation of heat transfer and friction factor characteristics of circular tube fitted with an array of semi-elliptical vortex generator inserts." Cogent Engineering 8 (2021). https://doi.org/10.1080/23311916.2021.1968742

Downloads

Published

2023-02-03

Issue

Section

Articles

Most read articles by the same author(s)