Numerical and Experimental Validation of a New Methodology for the Design of Michel-Banki Turbine

Authors

  • Steven Galvis-Holguin Department of Mechatronics, Faculty of Engineering, Escuela Colombiana de Carreras Industriales, Medellín, Colombia
  • Jorge Sierra Del Río Department of Mechanics Engineering, Faculty of Engineering, Institución Universitaria Pascual Bravo, research group GIIAN, Medellín, Colombia
  • Diana I. González-Arango Department of Mechatronics and Electromechanics, Faculty of Engineering, Instituto Tecnológico Metropolitano, Medellín, Colombia
  • Edwin Correa-Quintana Department of Mechatronics and Electromechanics, Faculty of Engineering, Instituto Tecnológico Metropolitano, Medellín, Colombia
  • Lisandra Da Rocha Meneses Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, research group WBVG, Wrocław, Poland

DOI:

https://doi.org/10.37934/cfdl.17.5.7689

Keywords:

Michell-Banki Turbines, CFD, Cross Flow, Renewable Energy, Experimental Tests

Abstract

Michell-Banki cross-flow turbines (MBT) are low-cost turbines that are easy to manufacture and maintain, which makes them ideal for implementation in small-scale hydroelectric projects. Although the MBT has lower efficiencies than turbines such as the Pelton and Francis, it maintains its efficiency stable in the face of fluctuations in flow conditions. The objective of this study is to validate, both numerically and experimentally, a new design methodology that allows the construction of an MBT based on site conditions. For this purpose, the design of the different components of an MBT was implemented according to the site conditions. The experimentation was carried out in a hydraulic test bench, which consists of a water tank, a  centrifugal pump, a piping system, a PMAG SGM LEKTRA magnetic flow meter, a TRS605 FUTEK torque sensor, a pressure gauge, and a model of MBT designed and manufactured from scratch. It was concluded that the proposed methodology allows for obtaining experimental and numerical efficiencies of  and, respectively. Thus, a numerical-experimental validation of the MBT design and manufacturing methodology could be carried out.

Downloads

Download data is not yet available.

Author Biographies

Steven Galvis-Holguin, Department of Mechatronics, Faculty of Engineering, Escuela Colombiana de Carreras Industriales, Medellín, Colombia

sgalvish@ecci.edu.co

Jorge Sierra Del Río, Department of Mechanics Engineering, Faculty of Engineering, Institución Universitaria Pascual Bravo, research group GIIAN, Medellín, Colombia

jsierrad@pascualbravo.edu.co

Diana I. González-Arango, Department of Mechatronics and Electromechanics, Faculty of Engineering, Instituto Tecnológico Metropolitano, Medellín, Colombia

dianagonzalez7407@correo.itm.edu.co

Edwin Correa-Quintana, Department of Mechatronics and Electromechanics, Faculty of Engineering, Instituto Tecnológico Metropolitano, Medellín, Colombia

edwincorrea8630@correo.itm.edu.co

Lisandra Da Rocha Meneses, Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, research group WBVG, Wrocław, Poland

lisandra.meneses@tii.ae

References

Algarni, Salem, Vineet Tirth, Talal Alqahtani, Sultan Alshehery, and Pravin Kshirsagar. "Contribution of renewable energy sources to the environmental impacts and economic benefits for sustainable development." Sustainable Energy Technologies and Assessments 56 (2023): 103098. https://doi.org/10.1016/j.seta.2023.103098 DOI: https://doi.org/10.1016/j.seta.2023.103098

Adanta, Dendy, and Ahmad Indra Siswantara. "Assessment of turbulence modelling for numerical simulations into pico hydro turbine." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 46, no. 1 (2018): 21-31.

Basar, Mohd Farriz, Nurul Ashikin M. Rais, Azhan Ab Rahman, Wan Azani Mustafa, Kamaruzzaman Sopian, and Kaifui V. Wong. "Optimization of reaction typed water turbine in very low head water resources for Pico Hydro." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 90, no. 1 (2022): 23-39. https://doi.org/10.37934/arfmts.90.1.2339 DOI: https://doi.org/10.37934/arfmts.90.1.2339

Suarda, Made, Made Sucipta, and Ibnu Gusti Muttakin. "Semi twisted curve blade vortex turbine performance at runner rotation speed variation using CFD simulation." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 104, no. 2 (2023): 26-35. https://doi.org/10.37934/arfmts.104.2.2635 DOI: https://doi.org/10.37934/arfmts.104.2.2635

Temel, Pelin, Elcin Kentel, and Emre Alp. "Development of a site selection methodology for run-of-river hydroelectric power plants within the water-energy-ecosystem nexus." Science of the Total Environment 856 (2023): 159152. https://doi.org/10.1016/j.scitotenv.2022.159152 DOI: https://doi.org/10.1016/j.scitotenv.2022.159152

Rodas, Carlos Artemio Macias, Pascual Lopez de Paz, Orlando Lastres Danguillecourt, and Guillermo Ibáñez Duharte. "Analysis and optimization to a test bench for Micro-hydro-generation." Energy Reports 8 (2022): 321-328. https://doi.org/10.1016/j.egyr.2022.10.292 DOI: https://doi.org/10.1016/j.egyr.2022.10.292

Mereke, Nebiyu Bogale, Venkata Ramayya Ancha, and Patrick Hendrick. "Numerical modeling and CFD simulation of diffuser augmented dual vertical axis hydrokinetic Banki-Michell turbine." Heliyon 10, no. 5 (2024). https://doi.org/10.1016/j.heliyon.2024.e26970 DOI: https://doi.org/10.1016/j.heliyon.2024.e26970

Dragomirescu, Andrei, and Mihai Schiaua. "Experimental and numerical investigation of a Bánki turbine operating far away from design point." Energy Procedia 112 (2017): 43-50. https://doi.org/10.1016/j.egypro.2017.03.1057 DOI: https://doi.org/10.1016/j.egypro.2017.03.1057

Adhikari, R. C., and D. H. Wood. "A new nozzle design methodology for high efficiency crossflow hydro turbines." Energy for Sustainable Development 41 (2017): 139-148. https://doi.org/10.1016/j.esd.2017.09.004 DOI: https://doi.org/10.1016/j.esd.2017.09.004

Ha, Hojin, Sangwoo Ham, EHSAN ADEEB, and Jeong Wan Lee. "Numerical Evaluation of Low-Head Inverted Cross-Flow Turbine Design Methodology: A Comprehensive Study." Available at SSRN 4479475.

C. A. Mockmore and F. Merryfield, THE BANKI WATER TURBINE, Bulletin Series 25. Oregon State College, 1949. Accessed: Jun. 26, 2024.

Bhagat, Ravindra, Dinesh Kumar, and Shibayan Sarkar. "Employability of vertical axis crossflow whirlybird rotor as hydrokinetic turbine and its performance prediction corresponding to different design parameters." Ocean Engineering 238 (2021): 109744. https://doi.org/10.1016/j.oceaneng.2021.109744 DOI: https://doi.org/10.1016/j.oceaneng.2021.109744

Jiyun, Du, Shen Zhicheng, and Yang Hongxing. "Study on the effects of blades outer angle on the performance of inline cross-flow turbines." Energy Procedia 158 (2019): 1039-1045. https://doi.org/10.1016/j.egypro.2019.01.252 DOI: https://doi.org/10.1016/j.egypro.2019.01.252

Prabowoputra, Dandun Mahesa, Aditya Rio Prabowo, Indri Yaningsih, Dominicus Danardono Dwi Prija Tjahjana, Fajar Budi Laksono, Ristiyanto Adiputra, and Hendri Suryanto. "Effect of Blade Angle and Number on the Performance of Bánki Hydro-Turbines: Assessment using CFD and FDA Approaches." (2023): 519-530. https://doi.org/10.5109/6782156 DOI: https://doi.org/10.5109/6782156

Mehr, Goodarz, Mohammad Durali, Mohammad Hadi Khakrand, and Hadi Hoghooghi. "A novel design and performance optimization methodology for hydraulic Cross-Flow turbines using successive numerical simulations." Renewable Energy 169 (2021): 1402-1421. https://doi.org/10.1016/j.renene.2021.01.090 DOI: https://doi.org/10.1016/j.renene.2021.01.090

Ranjan, Rajeev Kumar, Nur Alom, Jaswant Singh, and Bikash Kumar Sarkar. "Performance investigations of cross flow hydro turbine with the variation of blade and nozzle entry arc angle." Energy conversion and management 182 (2019): 41-50. https://doi.org/10.1016/j.enconman.2018.12.075 DOI: https://doi.org/10.1016/j.enconman.2018.12.075

Leguizamón, Sebastián, and François Avellan. "Computational parametric analysis of the design of cross-flow turbines under constraints." Renewable Energy 159 (2020): 300-311. https://doi.org/10.1016/j.renene.2020.03.187 DOI: https://doi.org/10.1016/j.renene.2020.03.187

Bhagat, Ravindra, Dinesh Kumar, and Shibayan Sarkar. "Design modification and performance prediction of ellipsoid cross-flow hydrokinetic turbine." Renewable Energy 219 (2023): 119475. https://doi.org/10.1016/j.renene.2023.119475 DOI: https://doi.org/10.1016/j.renene.2023.119475

Capera, Freddy Sotto, Juan Gonzalo Ardila Marín, and Camila Cerquera Sandoval. "Numerical Study of the Opening Angle Incidence in Michell-Banki Turbine’s Performance without Guide Blades." International Journal of Engineering Research in Africa 67 (2023): 101-122. https://doi.org/10.4028/p-EO6We7 DOI: https://doi.org/10.4028/p-EO6We7

Sammartano, Vincenzo, Gabriele Morreale, Marco Sinagra, and Tullio Tucciarelli. "Numerical and experimental investigation of a cross-flow water turbine." Journal of Hydraulic Research 54, no. 3 (2016): 321-331. https://doi.org/10.1080/00221686.2016.1147500

D. G. Shepherd, Principles of turbomachiney, 17th ed. Technology & Engineering, 1956. Accessed: Jun. 26, 2024.

Sammartano, Vincenzo, Costanza Aricò, Armando Carravetta, Oreste Fecarotta, and Tullio Tucciarelli. "Banki-Michell optimal design by computational fluid dynamics testing and hydrodynamic analysis." Energies 6, no. 5 (2013): 2362-2385. https://doi.org/10.3390/en6052362

Quaranta, Emanuele, Jean Pierre Perrier, and Roberto Revelli. "Optimal design process of crossflow Banki turbines: Literature review and novel expeditious equations." Ocean Engineering 257 (2022): 111582. https://doi.org/10.1016/j.oceaneng.2022.111582 DOI: https://doi.org/10.1016/j.oceaneng.2022.111582

Galvis-Holguin, Steven, Jorge Sierra-Del-Rio, Diego Hincapié-Zuluaga, and Edwin Chica-Arrieta. "Numerical validation of a design methodology for crossflow turbine type Michell-Banki." Tecnología y Ciencias del Agua 12, no. 5 (2021). https://doi.org/10.24850/j-tyca-2021-05-03 DOI: https://doi.org/10.24850/j-tyca-2021-05-03

Woldemariam, Endashaw Tesfaye, Hirpa G. Lemu, and G. Gary Wang. "CFD-driven valve shape optimization for performance improvement of a micro cross-flow turbine." Energies 11, no. 1 (2018): 248. https://doi.org/10.3390/en11010248 DOI: https://doi.org/10.3390/en11010248

Kaunda, Chiyembekezo S., Cuthbert Z. Kimambo, and Torbjorn K. Nielsen. "A numerical investigation of flow profile and performance of a low cost Crossflow turbine." International Journal of Energy & Environment 5, no. 3 (2014).

Sammartano, Vincenzo, Gabriele Morreale, Marco Sinagra, and Tullio Tucciarelli. "Numerical and experimental investigation of a cross-flow water turbine." Journal of Hydraulic Research 54, no. 3 (2016): 321-331. https://doi.org/10.1080/00221686.2016.1147500 DOI: https://doi.org/10.1080/00221686.2016.1147500

Massoud, Mahmoud. "Two-Phase Flow and Heat Transfer." Engineering Thermofluids: Thermodynamics, Fluid Mechanics, and Heat Transfer (2005): 601-686.

Hang, Leong Chee, Nur Athirah Nadwa Rosli, Mastura Ab Wahid, Norazila Othman, Shabudin Mat, and Mohd Zarhamdy Md Zain. "CFD Analysis on Propeller at Varying Propeller Disc Angle and Advance Ratio." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 96, no. 1 (2022): 82-95. https://doi.org/10.37934/arfmts.96.1.8295 DOI: https://doi.org/10.37934/arfmts.96.1.8295

Ceballos, Y. Castañeda, M. Cardona Valencia, Diego Hincapie Zuluaga, J. Sierra Del Rio, and S. Vélez García. "Influence of the number of blades in the power generated by a Michell Banki Turbine." International Journal Of Renewable Energy Research IJRER 7, no. 4 (2017): 1989-1997.

Sammartano, V., G. Morreale, M. Sinagra, A. Collura, and T. Tucciarelli. "Experimental study of cross-flow micro-turbines for aqueduct energy recovery." Procedia Engineering 89 (2014): 540-547. https://doi.org/10.1016/j.proeng.2014.11.476 DOI: https://doi.org/10.1016/j.proeng.2014.11.476

Sammartano, Vincenzo, Costanza Aricò, Armando Carravetta, Oreste Fecarotta, and Tullio Tucciarelli. "Banki-Michell optimal design by computational fluid dynamics testing and hydrodynamic analysis." Energies 6, no. 5 (2013): 2362-2385. https://doi.org/10.3390/en6052362 DOI: https://doi.org/10.3390/en6052362

Chichkhede, Shashi, Vinay Verma, Vivek Kumar Gaba, and Shubhankar Bhowmick. "A simulation based study of flow velocities across cross flow turbine at different nozzle openings." Procedia Technology 25 (2016): 974-981. https://doi.org/10.1016/j.protcy.2016.08.190 DOI: https://doi.org/10.1016/j.protcy.2016.08.190

Warjito, R. D., A. I. Siswantara, D. Adanta, A. P. Prakoso, and R. Dianofitra. "Comparison between Airfoil NACA-6712 Profiled and Ordinary Blade in Cross-flow Turbine by Numerical Simulation." In The 15th International Conference on Quality in Research (QiR 2017). Available at: https://scholar. ui. ac. id/en/publications/comparison-between-airfoil-naca-6712-profiled-and-ordinary-blade. 2017.

Adanta, Dendy, and Aji Putro Prakoso. "Performance comparison of NACA 6509 and 6712 on pico hydro type cross-flow turbine by numerical method." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 45, no. 1 (2018): 116-127.

Acharya, Nirmal, Chang-Gu Kim, Bhola Thapa, and Young-Ho Lee. "Numerical analysis and performance enhancement of a cross-flow hydro turbine." Renewable energy 80 (2015): 819-826. https://doi.org/10.1016/j.renene.2015.01.064 DOI: https://doi.org/10.1016/j.renene.2015.01.064

Adhikari, Ram, and David Wood. "The design of high efficiency crossflow hydro turbines: A review and extension." Energies 11, no. 2 (2018): 267. https://doi.org/10.3390/en11020267 DOI: https://doi.org/10.3390/en11020267

Published

2024-11-30

Issue

Section

Articles

Most read articles by the same author(s)