Structural Analysis of a First, Second and Third Generation Horizontal Axis Hydrokinetic Turbine
DOI:
https://doi.org/10.37934/cfdl.16.1.7994Keywords:
CFD, Augmented, Diffuser, FEA, FSI, Renewable energy, RiverAbstract
The objective of this work is to evaluate through computational simulation the structural integrity of a horizontal axis hydrokinetic turbine (HAHKT) when using various geometric configurations of diffusers. This study was carried out by fluid -structure interaction (FSI) sing Ansys Workbench V18.2, coupling CFX and mechanical structural, in which a structural analysis was carried out based on the results obtained at the hydrodynamic level of a HAHKT composed of three blades with profile NREL S822, which was also analysed under the implementation of two geometric diffuser configurations. The maximum stresses in the blades increase of 27 % using the third-generation diffuser.
Downloads
References
J. Aguilar, A. Rubio-Clemente, L. Velasquez, and E. Chica. (2019). “Design and Optimization of a Multi-Element Hydrofoil for a Horizontal-Axis Hydrokinetic Turbine,” Energies (Basel), vol. 12, no. 24, p. 4679, doi: 10.3390/en12244679.
M. Temesgen Tigabu, D. Diriba Guta, B. Tamrat Admasu, and C. Author. (2019). “INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH”. Muluken et al Economics of Hydro-Kinetic Turbine for off-grid Application: A Case Study of Gumara River, Upper Blue Nile, Amhara, Ethiopia,”
M. A. Al-Dabbagh and I. Yuce. (2018). “Simulation and Comparison of Helical and Straight-Bladed Hydrokinetic Turbines”. doi: https://doi.org/10.20508/ijrer.v8i1.6697.g7345.
M. I. Yuce and A. Muratoglu. (2015). “Hydrokinetic energy conversion systems: A technology status review,” Renewable and Sustainable Energy Reviews, vol. 43, pp. 72–82, doi: 10.1016/j.rser.2014.10.037.
E. Chica, F. Ṕerez, A. Rubio-Clemente, and S. Agudelo. (2015). “Design of a hydrokinetic turbine,” WIT Transactions on Ecology and the Environment, vol. 195, pp. 137–148, doi: 10.2495/ESUS150121.
J. M. O’Brien, T. M. Young, D. C. O’Mahoney, and P. C. Griffin. (2017). “Horizontal axis wind turbine research: A review of commercial CFD, FE codes and experimental practices,” Progress in Aerospace Sciences, vol. 92, pp. 1–24. doi: 10.1016/j.paerosci.2017.05.001.
X. Liu, Y. Luo, B. W. Karney, and W. Wang. (2020). “A selected literature review of efficiency improvements in hydraulic turbines,” Renewable and Sustainable Energy Reviews, vol. 51, pp. 18–28 doi: 10.1016/j.rser.2015.06.023.
R. Alipour, R. Alipour, F. Fardian, S. S. R. Koloor, and M. Petrů. (2020). “Performance improvement of a new proposed Savonius hydrokinetic turbine: a numerical investigation,” Energy Reports, vol. 6, no. November, pp. 3051–3066, doi: 10.1016/j.egyr.2020.10.072.
M. Pourmahdavi, M. Safari, and S. Derakhshan. (2018). “Numerical Study into the Effect of Working Environment on Energy Extraction Performance of Tandem Arranged Flapping Foils,” International Journal of Renewable Energy Research, vol. 8, pp. 1604–1611, doi: https://doi.org/10.20508/ijrer.v8i3.7844.g7459.
R. Alipour, R. Alipour, F. Fardian, and M. Hossein Tahan (2022). “Optimum performance of a horizontal axis tidal current turbine: A numerical parametric study and experimental validation,” Energy Convers Manag, vol. 258, p. 115533, doi: 10.1016/j.enconman.2022.115533.
E. Chica and A. Rubio-Clemente, “Design of Zero Head Turbines for Power Generation,” in Renewable Hydropower Technologies, InTech, 2017. doi: 10.5772/66907.
A. Abdolahifar, M. Azizi, and A. Zanj. (2023). “Flow structure and performance analysis of Darrieus vertical axis turbines with swept blades: A critical case study on V-shaped blades,” Ocean Engineering, vol. 280, p. 114857, doi: 10.1016/j.oceaneng.2023.114857.
V. N. Chaudhari and S. P. Shah. (2023). “Numerical investigation on the performance of an innovative Airfoil-Bladed Savonius Hydrokinetic Turbine (ABSHKT) with deflector,” International Journal of Thermofluids, vol. 17, p. 100279, doi: 10.1016/j.ijft.2023.100279.
M. M. Nunes, A. C. P. Brasil Junior, and T. F. Oliveira. (2020). “Systematic review of diffuser-augmented horizontal-axis turbines,” Renewable and Sustainable Energy Reviews, vol. 133, p. 110075, doi: 10.1016/j.rser.2020.110075.
R. H. van Els and A. C. P. B. Junior. (2015). “The Brazilian Experience with Hydrokinetic Turbines,” Energy Procedia, vol. 75, pp. 259–264, doi: 10.1016/j.egypro.2015.07.328.
N. Kolekar and A. Banerjee. (2013). “A coupled hydro-structural design optimization for hydrokinetic turbines,” Journal of Renewable and Sustainable Energy, vol. 5, no. 5, p. 053146, doi: 10.1063/1.4826882.
D. Kumar and S. Sarkar. (2017). “Modelling of flow-induced stress on helical Savonius hydrokinetic turbine with the effect of augmentation technique at different operating conditions,” Renew Energy, vol. 111, pp. 740–748, Oct. 2017, doi: 10.1016/j.renene.2017.05.006.
ESSS, “Interacción Fluido-Estructura”. (2016). https://www.esss.co/es/blog/interaccion-fluido-estructura/ (accessed Feb. 09, 2020).
C.-M. Cristian, S.-D. R. Jorge, and H.-Z. Diego. (2018). “Computational Fluids Dynamics Analysis at First, Second and Third Hydrokinetics Turbine Generation,” Indian J Sci Technol, vol. 11, no. 36, pp. 1–8, doi: 10.17485/ijst/2018/v11i36/129278.
L. Piancastelli, R. V Clarke, and S. Cassani. (2017). “DIFFUSER AUGMENTEDRUN THE RIVER AND TIDAL PICO-HYDROPOWER GENERATION SYSTEM,” vol. 12, no. 8. Available: http://www.arpnjournals.org/jeas/research_papers/rp_2017/jeas_0417_5957.pdf
D. Kumar and S. Sarkar. (2017). “Modelling of flow-induced stress on helical Savonius hydrokinetic turbine with the effect of augmentation technique at different operating conditions,” Renew Energy, vol. 111, pp. 740–748, doi: 10.1016/j.renene.2017.05.006.
E. Chica, F. Perez, A. Rubio-Clemente, and S. Agudelo. (2015). “Design of a hydrokinetic turbine,” WIT Transactions on Ecology and The Environment, vol. 195, pp. 137–148. Doi: 10.2495/ESUS150121
S.-J. Kim, P. M. Singh, B.-S. Hyun, Y.-H. Lee, and Y.-D. Choi. (2017). “A study on the floating bridge type horizontal axis tidal current turbine for energy independent islands in Korea,” Renew Energy, vol. 112, pp. 35–43, doi: 10.1016/j.renene.2017.05.025.
F. Khaled, S. Guillou, Y. Méar, and F. Hadri. (2021). “Impact of the blockage ratio on the transport of sediment in the presence of a hydrokinetic turbine: Numerical modelling of the interaction sediment and turbine,” International Journal of Sediment Research, vol. 36, no. 6, pp. 696–710, doi: 10.1016/j.ijsrc.2021.02.003.
K. Kusakana and H. J. Vermaak. (2014). “Cost and Performance Evaluation of Hydrokinetic-diesel Hybrid Systems,” Energy Procedia, vol. 61, pp. 2439–2442, doi: 10.1016/j.egypro.2014.12.019.
F. Foroozmehr, “Ductile Fracture of 13% Cr-4% Ni Martensitic Stainless Steels Used in Hydraulic Turbine Welded Runners,” École Polytechnique de Montréal, 2017. [Online]. Available: https://publications.polymtl.ca/2770/
A. H. Muñoz, L. E. Chiang, and E. A. De la Jara. (2014). “A design tool and fabrication guidelines for small low cost horizontal axis hydrokinetic turbines,” Energy for Sustainable Development, vol. 22, pp. 21–33, doi: 10.1016/j.esd.2014.05.003.
H. Li, Z. Hu, K. Chandrashekhara, X. Du, and R. Mishra. (2014). “Reliability-based fatigue life investigation for a medium-scale composite hydrokinetic turbine blade,” Ocean Engineering, vol. 89, pp. 230–242, doi: 10.1016/j.oceaneng.2014.08.006.
F. Jing, W. Ma, L. Zhang, S. Wang, and X. Wang. (2017). “Experimental study of hydrodynamic performance of full-scale horizontal axis tidal current turbine,” Journal of Hydrodynamics, vol. 29, no. 1, pp. 109–117, doi: 10.1016/S1001-6058(16)60722-9.