Numerical Study of H-Darrieus Turbine as a Rotor for Gravitational Vortex Turbine

Authors

  • Jorge Andrés Sierra Del Rio Department of Engineering, Environmental Research Group – GIIAM, Institución Universitaria Pascual Bravo, Medellín, Colombia
  • Alejandro Ruiz Sánchez Department of Mechatronics Engineering, Research Group – MATyER, Instituto Tecnológico Metropolitano, Medellín, Colombia
  • Daniel Sanín Villa Department of Engineering, Investigación e Innovación en energía Group – GIIEN, Institución Universitaria Pascual Bravo, Medellín, Colombia
  • Edwin Correa Quintana Department of Mechatronics Engineering, Research Group – MATyER, Instituto Tecnológico Metropolitano, Medellín, Colombia

DOI:

https://doi.org/10.37934/cfdl.14.8.111

Keywords:

Vortex, Geometry, Turbine, Energy, Darrieus, CFD, Rotor

Abstract

The main objetive of this study is to compare numerically the torque generated at 50, 75, 100, and 125 rpm by H-Darrieus turbine as a rotor for Gravitational Vortex Turbine. The rotational flow into the gravitational vortex turbine tank helped to decrease the negative torque in H-Darrieus rotor. The study was developed in ANSYS® CFX, where the model was configured at constant operating conditions. The highest torque was 0.117 Nm at 50 rpm, and the torque decreased with increasing rpm. The H-Darrieus works with increasing lift force, however, the rotor inside the Gravitational Vortex Turbine interacts with drag force.

Downloads

Download data is not yet available.

Author Biographies

Jorge Andrés Sierra Del Rio, Department of Engineering, Environmental Research Group – GIIAM, Institución Universitaria Pascual Bravo, Medellín, Colombia

jsierrad@pascualbravo.edu.co

Alejandro Ruiz Sánchez, Department of Mechatronics Engineering, Research Group – MATyER, Instituto Tecnológico Metropolitano, Medellín, Colombia

alejandroruiz190787@correo.itm.edu.co

Daniel Sanín Villa, Department of Engineering, Investigación e Innovación en energía Group – GIIEN, Institución Universitaria Pascual Bravo, Medellín, Colombia

d.saninvi@pascualbravo.edu.co

Edwin Correa Quintana, Department of Mechatronics Engineering, Research Group – MATyER, Instituto Tecnológico Metropolitano, Medellín, Colombia

edwincorrea8630@correo.itm.edu.co

References

F. Zotlöterer, "Gravitational Water Vortex Power Plants," 2003. http://www.zotloeterer.com/welcome/gravitation-water-vortex-power-plants/configuration-function/ (accessed Mar. 04, 2018).

Sierra, Jorge, Alejandro Ruiz, Angie Guevara, and Alejandro Posada. "Gravitational Vortex Turbines as a Renewable Energy." International Journal of Fluid Machinery and Systems 13, no. 4 (2020): 704-717. https://doi.org/10.5293/IJFMS.2020.13.4.704

Li, Hai-feng, Hong-xun Chen, Zheng Ma, and Yi Zhou. "Formation and influencing factors of free surface vortex in a barrel with a central orifice at bottom." Journal of hydrodynamics 21, no. 2 (2009): 238-244. https://doi.org/10.1016/S1001-6058(08)60141-9

B. Petrovic, "Micro Usina Hidreléctrica Baseada no Vórtice Gravitacional," Intituto Nikola Tesla.

Sánchez, Alejandro Ruiz, Jorge Andrés Sierra Del Rio, Angie Judith Guevara Muñoz, and José Alejandro Posada Montoya. "Numerical and experimental evaluation of concave and convex designs for gravitational water vortex turbine." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 64, no. 1 (2019): 160-172.

Wasserwirbe, "Genossenschaft Wasserwirbel Konzepte Schweiz," 2017. http://gwwk.ch/ (accessed Mar. 05, 2018).

Green by Jonh;, "Vortex at Green School," 2015. http://greenbyjohn.com/vortex-at-green-school/ (accessed Apr. 11, 2018).

Turbulent;, "Turbulent micro hydropower," 2019. http://www.turbulent.be/ (accessed Mar. 05, 2018).

KCT, "KOURIS CENTRI TURBINE," 2016. http://www.kcthydropower.com/.

Wasserwirbelkraftwerk, "Wasserwirbelkraftwerk," 2017. http://wasserwirbelkraftwerk-de.simplesite.com/434308050.

Dhakal, Rabin, A. Nepal, A. Acharya, B. Kumal, T. Aryal, S. J. Williamson, K. Khanal, and L. Devkota. "Technical and economic prospects for the site implementation of a gravitational water vortex power plant in Nepal." In 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA), pp. 1001-1006. IEEE, 2016. https://doi.org/10.1109/ICRERA.2016.7884485

Wanchat, Sujate, and Ratchaphon Suntivarakorn. "Preliminary design of a vortex pool for electrical generation." Advanced Science Letters 13, no. 1 (2012): 173-177. https://doi.org/10.1166/asl.2012.3855

MARIAN, CB Gheorghe-Marius, Tudor SAJIN, Iulian FLORESCU, Dragos-Iulian NEDELCU, and Constantin-Narcis OSTAHIE. "the Concept and Theoretical Study of Micro Hydropower Plant With Gravitational the Concept and Theoretical Study of Micro Hydropower Plant With Wit H Gravitational Vortex and." In World Energy Syst. Conf, no. 3, pp. 219-226. 2012.

Dhakal, Sagar, Ashesh Babu Timilsina, Rabin Dhakal, Dinesh Fuyal, Tri Ratna Bajracharya, and Hari Prasad Pandit. "Effect of dominant parameters for conical basin: Gravitational water vortex power plant." In Proceedings of IOE graduate conference, vol. 5, p. 381. 2014.

Kueh, Tze Cheng, Shiao Lin Beh, Dirk Rilling, and Yongson Ooi. "Numerical analysis of water vortex formation for the water vortex power plant." International Journal of Innovation, Management and Technology 5, no. 2 (2014): 111.

Vatistas, G. H., S. Lin, and C. K. Kwok. "Theoretical and experimental studies on vortex chamber flows." AIAA journal 24, no. 4 (1986): 635-642. https://doi.org/10.2514/3.9319

Mulligan, S., J. Casserly, and R. Sherlock. "Experimental and numerical modelling of free-surface turbulent flows in full air-core water vortices,[In:] Gourbesville P., Cunge J., Caignaert G.(Eds) Advances in Hydroinformatic." (2014): 549-569. https://doi.org/10.1007/978-981-287-615-7

Shabara, H. M., O. B. Yaakob, Yasser M. Ahmed, A. H. Elbatran, and Muhammad SM Faddir. "CFD validation for efficient gravitational vortex pool system." Jurnal Teknologi 74, no. 5 (2015). https://doi.org/10.11113/jt.v74.4648

Dhakal, Sagar, Ashesh B. Timilsina, Rabin Dhakal, Dinesh Fuyal, Tri R. Bajracharya, Hari P. Pandit, Nagendra Amatya, and Amrit M. Nakarmi. "Comparison of cylindrical and conical basins with optimum position of runner: Gravitational water vortex power plant." Renewable and Sustainable Energy Reviews 48 (2015): 662-669. https://doi.org/10.1016/j.rser.2015.04.030

Wanchat, Sujate, Ratchaphon Suntivarakorn, Sujin Wanchat, Kitipong Tonmit, and Pongpun Kayanyiem. "A parametric study of a gravitation vortex power plant." In Advanced Materials Research, vol. 805, pp. 811-817. Trans Tech Publications Ltd, 2013. https://doi.org/10.4028/www.scientific.net/AMR.805-806.811

Kumar, Anuj, and Rajeshwer Prasad Saini. "Performance parameters of Savonius type hydrokinetic turbine–A Review." Renewable and Sustainable Energy Reviews 64 (2016): 289-310. https://doi.org/10.1016/j.rser.2016.06.005

Patel, Vimal, T. I. Eldho, and S. V. Prabhu. "Performance enhancement of a Darrieus hydrokinetic turbine with the blocking of a specific flow region for optimum use of hydropower." Renewable Energy 135 (2019): 1144-1156. https://doi.org/10.1016/j.renene.2018.12.074

Dabachi, Mohamed Amine, Abdellatif Rahmouni, and Otmane Bouksour. "Design and aerodynamic performance of new floating H-darrieus vertical Axis wind turbines." Materials Today: Proceedings 30 (2020): 899-904. https://doi.org/10.1016/j.matpr.2020.04.347

Dabachi, Mohamed Amine, Marwane Rouway, Abdellatif Rahmouni, Otmane Bouksour, Sara Jamoudi Sbai, Houda Laaouidi, Mostapha Tarfaoui, Abdelwahed Aamir, and Oumnia Lagdani. "Numerical Investigation of the Structural Behavior of an Innovative Offshore Floating Darrieus-Type Wind Turbines with Three-Stage Rotors." Journal of Composites Science 6, no. 6 (2022): 167. https://doi.org/10.3390/jcs6060167

Du, Jiyun, Zhicheng Shen, and Hongxing Yang. "Effects of different block designs on the performance of inline cross-flow turbines in urban water mains." Applied energy 228 (2018): 97-107. https://doi.org/10.1016/j.apenergy.2018.06.079

Ardila, Juan, Diego Hincapié, and Julio Casas. "Numerical models validation to correlations development for heat exchangers." Actas Ing 1 (2015): 164-168.

Ceballos, Y. Castañeda, M. Cardona Valencia, Diego Hincapie Zuluaga, J. S. Del Rio, and S. V. García. "Influence of the number of blades in the power generated by a Michell Banki Turbine." International Journal Of Renewable Energy Research IJRER 7, no. 4 (2017): 1989-1997.

Qing, Nelvin Kaw Chee, Nor Afzanizam Samiran, and Razlin Abd Rashid. "CFD Simulation analysis of Sub-Component in Municipal Solid Waste Gasification using Plasma Downdraft Technique." Journal of Advanced Research in Numerical Heat Transfer 8, no. 1 (2022): 36-43.

ANSYS, "Courant number," in ANSYS HELP, 2019.

Elfaghi, Abdulhafid MA, Alhadi A. Abosbaia, Munir FA Alkbir, and Abdoulhdi AB Omran. "CFD Simulation of Forced Convection Heat Transfer Enhancement in Pipe Using Al2O3/Water Nanofluid." Journal of Advanced Research in Numerical Heat Transfer 8, no. 1 (2022): 44-49.

Mulligan, S., J. Casserly, and R. Sherlock. "Experimental and numerical modelling of free-surface turbulent flows in full air-core water vortices,[In:] Gourbesville P., Cunge J., Caignaert G.(Eds) Advances in Hydroinformatic." (2014): 549-569.

Gómez, F. Hoyos, JD Betancur Gómez, D. Osorio Patiño, and JG Ardila Marín. "Construcción de curvas de factor de concentración de esfuerzos por medio de simulaciones." Revista Cintex 21, no. 1 (2016): 35-43.

Subramaniam, Thineshwaran, and Mohammad Rasidi Rasani. "Pulsatile CFD Numerical Simulation to investigate the effect of various degree and position of stenosis on carotid artery hemodynamics." Journal of Advanced Research in Applied Sciences and Engineering Technology 26, no. 2 (2022): 29-40. https://doi.org/10.37934/araset.26.2.2940

Niknahad, Ali. "Numerical study and comparison of turbulent parameters of simple, triangular, and circular vortex generators equipped airfoil model." Journal of Advanced Research in Numerical Heat Transfer 8, no. 1 (2022): 1-18.

Shiono, Mitsuhiro, Katsuyuki Suzuki, and Seiji Kiho. "An experimental study of the characteristics of a Darrieus turbine for tidal power generation." Electrical Engineering in Japan 132, no. 3 (2000): 38-47. https://doi.org/10.1002/1520-6416(200008)132:3<38::AID-EEJ6>3.0.CO;2-E

SÁNCHEZ, Alejandro RUIZ, Angie GUEVARA MUÑOZ, Jorge Andrés Sierra Del Rio, and Jose Alejandro POSADA MONTOYA. "Numerical comparison of two runners for gravitational vortex turbine." Engineering Transactions 69, no. 1 (2021): 3-17.

Downloads

Published

2022-08-20

Issue

Section

Articles

Most read articles by the same author(s)