Numerical Comparison of Three Rotors For Gravitational Water Vortex Turbine
DOI:
https://doi.org/10.37934/cfdl.17.5.120130Keywords:
Vortex, Runner, H-Darrieus, Savonius, ANSYS, Blades, Performance, Energy, ICEM, CFDAbstract
Renewable energy sources have gained significant attention due to the increasing demand for clean energy production. The gravitational vortex turbine (GVT) is one of the emerging technologies in the field of renewable energy that has gained attention for its simple and low-cost manufacturing process. The turbine operates by utilizing the energy of wastewater or other liquid flows to generate power on-site, making it a potentially viable solution for small-scale power generation. However, the optimization of the turbine's design is necessary to improve its efficiency and to make it a more competitive source of renewable energy. Previous research on GVT has mainly focused on the chamber's design to improve the formation of the vortex. However, little attention has been paid to the rotor design, which is also a critical parameter affecting the turbine's performance. The current study aimed to investigate the performance of three different rotors for the turbine, including the Savonius, H-Darrieus, and a standard rotor with straight blades, using numerical simulations. The numerical simulations were performed using ANSYS software, with ICEM modules for discretization and CFX for simulation. The results showed that the straight-bladed rotor outperformed the other two rotors, with an increase in efficiency of 40% and 79% compared to the Savonius and H-Darrieus geometry blades, respectively. The study highlights the importance of considering the rotor design in the optimization of the gravitational vortex turbine. The results provide valuable insights into the design parameters that can be used to enhance the turbine's performance. These findings can contribute to the development of more efficient and cost-effective gravitational vortex turbines for on-site power generation and consumption.
Downloads
References
Ramiro. Ortiz Flórez and Eduardo. Machado Hernández, Pequeñas centrales hidroeléctricas. McGraw-Hill Interamericana, 2001. Accessed: Mar. 04, 2018.
First, Renewables. What is the difference between micro, mini and small hydro. 2016.
Zotlöterer, Franz. Gravitational Water Vortex Power Plants. 2003.
Li, Hai-feng, Hong-xun Chen, Zheng Ma, and Yi Zhou. "Formation and influencing factors of free surface vortex in a barrel with a central orifice at bottom." Journal of hydrodynamics 21, no. 2 (2009): 238-244. https://doi.org/10.1016/S1001-6058(08)60141-9 DOI: https://doi.org/10.1016/S1001-6058(08)60141-9
Shabara, H. M., O. B. Yaakob, Yasser M. Ahmed, A. H. Elbatran, and Muhammad SM Faddir. "CFD validation for efficient gravitational vortex pool system." Jurnal Teknologi 74, no. 5 (2015). https://doi.org/10.11113/jt.v74.4648 DOI: https://doi.org/10.11113/jt.v74.4648
Nishi, Yasuyuki, Ryouta Suzuo, Daichi Sukemori, and Terumi Inagaki. "Loss analysis of gravitation vortex type water turbine and influence of flow rate on the turbine’s performance." Renewable Energy 155 (2020): 1103-1117. https://doi.org/10.1016/j.renene.2020.03.186 DOI: https://doi.org/10.1016/j.renene.2020.03.186
MBasri, Muhammad Hasan, and Ainun Nasuki. "Water Discharge Management Based on Open and Closed Cylinders in the Gravitation Water Vortex Power Plant." JEEE-U (Journal of Electrical and Electronic Engineering-UMSIDA) 5, no. 1 (2021): 22-36. https://doi.org/10.21070/jeeeu.v5i1.1008 DOI: https://doi.org/10.21070/jeeeu.v5i1.1008
Mulligan, Sean, John Casserly, and Richard Sherlock. "Experimental and numerical modelling of free-surface turbulent flows in full air-core water vortices." Advances in Hydroinformatics: SIMHYDRO 2014 (2016): 549-569. https://doi.org/10.1007/978-981-287-615-7_37 DOI: https://doi.org/10.1007/978-981-287-615-7_37
Wanchat, Sujate, and Ratchaphon Suntivarakorn. "Preliminary design of a vortex pool for electrical generation." Advanced Science Letters 13, no. 1 (2012): 173-177. https://doi.org/10.1166/asl.2012.3855 DOI: https://doi.org/10.1166/asl.2012.3855
Dhakal, Sagar, Ashesh B. Timilsina, Rabin Dhakal, Dinesh Fuyal, Tri R. Bajracharya, Hari P. Pandit, Nagendra Amatya, and Amrit M. Nakarmi. "Comparison of cylindrical and conical basins with optimum position of runner: Gravitational water vortex power plant." Renewable and Sustainable Energy Reviews 48 (2015): 662-669. https://doi.org/10.1016/j.rser.2015.04.030 DOI: https://doi.org/10.1016/j.rser.2015.04.030
Sánchez, Alejandro Ruiz, Jorge Andrés Sierra Del Rio, Angie Judith Guevara Muñoz, and José Alejandro Posada Montoya. "Numerical and experimental evaluation of concave and convex designs for gravitational water vortex turbine." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 64, no. 1 (2019): 160-172.
Dhakal, Sagar, Ashesh Babu Timilsina, Rabin Dhakal, Dinesh Fuyal, Tri Ratna Bajracharya, and Hari Prasad Pandit. "Effect of dominant parameters for conical basin: Gravitational water vortex power plant." In Proceedings of IOE graduate conference, vol. 5, p. 381. 2014. doi: 10.13140/RG.2.1.1455.7843.
Sreerag, S. R., C. K. Raveendran, and B. S. Jinshah. "Effect of outlet diameter on the performance of gravitational vortex turbine with conical basin." International Journal of Scientific & Engineering Research 7, no. 4 (2016): 457-463.
Rehman, Wajiha, Masooma Ijaz, and Asma Munir. "Designing of micro gravitational vortex turbine’s vortex pool." In ASME Power Conference, vol. 57618, p. V002T12A002. American Society of Mechanical Engineers, 2017.
Wanchat, Sujate, Ratchaphon Suntivarakorn, Sujin Wanchat, Kitipong Tonmit, and Pongpun Kayanyiem. "A parametric study of a gravitation vortex power plant." Advanced Materials Research 805 (2013): 811-817. https://doi.org/10.4028/www.scientific.net/AMR.805-806.811 DOI: https://doi.org/10.4028/www.scientific.net/AMR.805-806.811
Maika, Nosare, and Syed MS Wahid. "Implementing gravitational vortex hydro power plant: Case study." Journal of The Institution of Engineers (India): Series C 102 (2021): 1565-1570. https://doi.org/10.1007/s40032-021-00754-z DOI: https://doi.org/10.1007/s40032-021-00754-z
Dhakal, Subash, Susan Nakarmi, Pikam Pun, Arun Bikram Thapa, and Tri Ratna Bajracharya. "Development and Testing of Runner and Conical Basin for Gravitational Water Vortex Power Plant." Journal of the Institute of Engineering 10, no. 1 (2014). https://doi.org/10.3126/jie.v10i1.10895 DOI: https://doi.org/10.3126/jie.v10i1.10895
Wichian, Pongsakorn, and Ratchaphon Suntivarakorn. "The effects of turbine baffle plates on the efficiency of water free vortex turbines." Energy Procedia 100 (2016): 198-202. https://doi.org/10.1016/j.egypro.2016.10.165 DOI: https://doi.org/10.1016/j.egypro.2016.10.165
Dhakal, Rabin, T. R. Bajracharya, S. R. Shakya, B. Kumal, Sam Williamson, K. Khanal, S. Gautam, and D. P. Ghale. "Computational and experimental investigation of runner for gravitational water vortex power plant." In 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA 2017): Proceedings of a meeting held 5-8 November 2017, San Diego, California, USA, pp. 365-373. Institute of Electrical and Electronics Engineers (IEEE), 2018. https://doi.org/10.1109/ICRERA.2017.8191087 DOI: https://doi.org/10.1109/ICRERA.2017.8191087
Saleem, Abdul Samad, Taqi Ahmad Cheema, Rizwan Ullah, Sarvat Mushtaq Ahmad, Javed Ahmad Chattha, Bilal Akbar, and Cheol Woo Park. "Parametric study of single-stage gravitational water vortex turbine with cylindrical basin." Energy 200 (2020): 117464. https://doi.org/10.1016/j.energy.2020.117464 DOI: https://doi.org/10.1016/j.energy.2020.117464
Ullah, Rizwan, Taqi Ahmad Cheema, Abdul Samad Saleem, Sarvat Mushtaq Ahmad, Javed Ahmad Chattha, and Cheol Woo Park. "Performance analysis of multi-stage gravitational water vortex turbine." Energy Conversion and Management 198 (2019): 111788. https://doi.org/10.1016/j.enconman.2019.111788 DOI: https://doi.org/10.1016/j.enconman.2019.111788
Ullah, Rizwan, Taqi Ahmad Cheema, Abdul Samad Saleem, Sarvat Mushtaq Ahmad, Javed Ahmad Chattha, and Cheol Woo Park. "Preliminary experimental study on multi-stage gravitational water vortex turbine in a conical basin." Renewable Energy 145 (2020): 2516-2529. https://doi.org/10.1016/j.renene.2019.07.128 DOI: https://doi.org/10.1016/j.renene.2019.07.128
Guzmán, Vladimir J. Alzamora, Julie A. Glasscock, and Ferris Whitehouse. "Design and construction of an off-grid gravitational vortex hydropower plant: A case study in rural Peru." Sustainable Energy Technologies and Assessments 35 (2019): 131-138. https://doi.org/10.1016/j.seta.2019.06.004 DOI: https://doi.org/10.1016/j.seta.2019.06.004
Sierra, Jorge, Alejandro Ruiz, Angie Guevara, and Alejandro Posada. "Gravitational Vortex Turbines as a Renewable Energy." International Journal of Fluid Machinery and Systems 13, no. 4 (2020): 704-717. https://doi.org/10.5293/IJFMS.2020.13.4.704 DOI: https://doi.org/10.5293/IJFMS.2020.13.4.704
Einstein, Hans Albert, and Huon Li. "Steady vortex flow in a real fluid." Proc. Heat Transfer and Fluid Mechanics Institute, Stanford University (1951): 33-43.
Vatistas, G. H., S. Lin, and C. K. Kwok. "Theoretical and experimental studies on vortex chamber flows." AIAA journal 24, no. 4 (1986): 635-642. https://doi.org/10.2514/3.9319 DOI: https://doi.org/10.2514/3.9319
Rosenhead, Louis. "The spread of vorticity in the wake behind a cylinder." Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character 127, no. 806 (1930): 590-612. https://doi.org/10.1098/rspa.1930.0078 DOI: https://doi.org/10.1098/rspa.1930.0078
JHite Jr, John E., and Walter C. Mih. "Velocity of air-core vortices at hydraulic intakes." Journal of Hydraulic Engineering 120, no. 3 (1994): 284-297. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:3(284) DOI: https://doi.org/10.1061/(ASCE)0733-9429(1994)120:3(284)
Odgaard, A. Jacob. "Free-surface air core vortex." Journal of Hydraulic Engineering 112, no. 7 (1986): 610-620. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:7(610) DOI: https://doi.org/10.1061/(ASCE)0733-9429(1986)112:7(610)
Rankine, William John Macquorn. A manual of applied mechanics. Charles Griffin and Company, 1872.
Burgers, Johannes Martinus. "A mathematical model illustrating the theory of turbulence." Advances in applied mechanics 1 (1948): 171-199. https://doi.org/10.1016/S0065-2156(08)70100-5 DOI: https://doi.org/10.1016/S0065-2156(08)70100-5
Rahman, M., Tan Jian Hong, Raymond Tang, Ling Leh Sung, and Fadzlita Binti Mohd Tamiri. "Experimental study the effects of water pressure and turbine blade lengths & numbers on the model free vortex power generation system." International Journal of Current Trends in Engineering & Research (IJCTER) 2, no. 9 (2016): 13-17.
Marian, Marius Gheorghe, Tudor Sajin, and Abdelkrim Azzouz. "Study of micro hydropower plant operating in gravitational vortex flow mode." Applied Mechanics and Materials 371 (2013): 601-605. https://doi.org/10.4028/www.scientific.net/AMM.371.601 DOI: https://doi.org/10.4028/www.scientific.net/AMM.371.601
Sánchez, Alejandro Ruiz, Angie Guevara Muñoz, Jorge Andrés Sierra Del Rio, and Jose Alejandro Posada Montoya. "Numerical comparison of two runners for gravitational vortex turbine." Engineering Transactions 69, no. 1 (2021): 3-17. https://doi.org/10.37934/cfdl.14.8.111 DOI: https://doi.org/10.37934/cfdl.14.8.111
Kumar, Anuj, and Rajeshwer Prasad Saini. "Performance parameters of Savonius type hydrokinetic turbine–A Review." Renewable and Sustainable Energy Reviews 64 (2016): 289-310. DOI: https://doi.org/10.1016/j.rser.2016.06.005
Patel, Vimal, T. I. Eldho, and S. V. Prabhu. "Performance enhancement of a Darrieus hydrokinetic turbine with the blocking of a specific flow region for optimum use of hydropower." Renewable Energy 135 (2019): 1144-1156. https://doi.org/10.1016/j.rser.2016.06.005
Ceballos, Y. Castañeda, M. Cardona Valencia, Diego Hincapie Zuluaga, J. Sierra Del Rio, and S. Vélez García. "Influence of the number of blades in the power generated by a Michell Banki Turbine." International Journal Of Renewable Energy Research IJRER 7, no. 4 (2017): 1989-1997. https://doi.org/10.1016/j.renene.2018.12.074 DOI: https://doi.org/10.1016/j.renene.2018.12.074
Roache, Patrick J., Kirti N. Ghia, and Frank M. White. "Editorial policy statement on the control of numerical accuracy." Journal of Fluids Engineering 108, no. 1 (1986): 2. https://doi.org/10.1115/1.3242537 DOI: https://doi.org/10.1115/1.3242537
ANSYS, “Courant number,” in ANSYS HELP, 2019.
F. Zotlöterer, “Zotloterer Smart-Energy-System.”
Turbulent;, “Turbulent micro hydropower,” 2019.
Beltran-Urango, D., J. L. Herrera-Díaz, J. A. Posada-Montoya, L. Castañeda, and J. A. Sierra-del Rio. "Generación de Energía Eléctrica Mediante Vórtices Gravitacionales." MEMORIAS EXPO TECNOLOGIAS 2016, Medellin, Antioquia (2016): 90-107.