Interaction Assessment of Stress Intensity Factors of Surface Cracks on Thick Cylinders under Tension Force and Bending Moment

Authors

  • Omar Mohammed Al-Moayed Renewable Energy Research Center, University of Anbar, Iraq
  • Johan M.F Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia
  • Al Emran Ismail Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia
  • Ali Kamil Kareem Department of Biomedical Engineering, Al-Mustaqbal University College, Hillah, Iraq
  • Saifulnizan Jamian Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia
  • Sufian Farid Shaker Renewable Energy Research Center, University of Anbar, Iraq
  • Tareq Hamad Abed Renewable Energy Research Center, University of Anbar, Iraq
  • Omar Hammad Aldulaymi Department of Chemical and Petrochemical Engineering, College of Engineering, University of Anbar, Ramadi, Anbar 31001, Iraq

DOI:

https://doi.org/10.37934/aram.118.1.131143

Keywords:

Crack interaction, double cracks, SIFs, thick cylinder

Abstract

From an engineering perspective, hollow cylinders have various applications in the industry due to their strength, versatility, and geometric properties, making them vital for various applications in diverse industries. Therefore, it could be seen in many aspects such as fluid conveyance, manufacturing and fabrication, rotating machinery, structural components, storage, and pressure vessels. As it is well-known fracture is the most dominant type of failure in cylinders that is caused by defects or flaws. With time, these cracks (flaws) may extend and lead to a tragic failure, posing significant risks to both the nearby environment and humans. Moreover, crack cooperation which is known as (crack interaction) represents a chief apprehension, where cooperation or interaction may accelerate the crack growth and cause unpredictable failure. In this work, a wide variety of crack configurations were examined to quantify the interaction of double-interacting surface cracks located on a thick cylinder numerically via ANSYS software. The Stress Intensity Factor (SIFs) has been utilized as a driving force to describe the crack interaction. The results found that crack interaction influenced both cracks by the same rate, and SIFs distributed along the crack front by the same style as that of a single crack. Also, an inversely proportional relationship has been found between the crack interaction and the separation distance between the cracks. It is possible to conclude that the crack interaction of double interacting cracks exhibited a shielding effect, where SIFs for the case of double cracks were less than those of single crack.

Author Biographies

Omar Mohammed Al-Moayed, Renewable Energy Research Center, University of Anbar, Iraq

omar.m.f@uoanbar.edu.iq

Johan M.F, Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia

gd220023@student.uthm.edu.my

Al Emran Ismail, Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia

emran@uthm.edu.my

Ali Kamil Kareem, Department of Biomedical Engineering, Al-Mustaqbal University College, Hillah, Iraq

ali.kamil.kareem@mustaqbal-college.edu.iq

Saifulnizan Jamian, Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia

saifulnz@uthm.edu.my

Sufian Farid Shaker, Renewable Energy Research Center, University of Anbar, Iraq

sshaker@uoanbar.edu.iq

Tareq Hamad Abed, Renewable Energy Research Center, University of Anbar, Iraq

tarek.hamd@uoanbar.edu.iq

Omar Hammad Aldulaymi, Department of Chemical and Petrochemical Engineering, College of Engineering, University of Anbar, Ramadi, Anbar 31001, Iraq

omer.hamaad@uoanbar.edu.iq

Downloads

Published

2024-05-30

How to Cite

Omar Mohammed Al-Moayed, Johan M.F, Al Emran Ismail, Ali Kamil Kareem, Saifulnizan Jamian, Sufian Farid Shaker, Tareq Hamad Abed, & Omar Hammad Aldulaymi. (2024). Interaction Assessment of Stress Intensity Factors of Surface Cracks on Thick Cylinders under Tension Force and Bending Moment. Journal of Advanced Research in Applied Mechanics, 118(1), 131–143. https://doi.org/10.37934/aram.118.1.131143

Issue

Section

Articles