Detection Model for Ambiguous Intrusion using SMOTE and LSTM for Network Security

Authors

  • Al-Ogaidi Ali Hameed Khalaf Department of Computer Science, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Raihani Mohamed Department of Computer Science, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Abdul Rafiez Abdul Raziff Kulliyyah of Information and Communication Technology, International Islamic University Malaysia, 50728 Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.37934/araset.39.2.191203

Keywords:

Intrusion detection, SMOTE, LSTM, imbalance dataset

Abstract

In today's interconnected world, networks play a crucial role. Consequently, network security has become increasingly vital. To ensure network security, various methods are employed, including digital signatures, firewalls, and intrusion detection. Among these methods, intrusion detection systems have gained significant popularity due to their ability to identify new attacks. However, the accuracy of these systems still requires further improvement. One of the challenges is the potential bias introduced by using imbalance datasets that contains more information on normal activities than on attacks. To address it, SMOTE method was proposed and additionally, the study explores the use of Long Short-Term Memory (LSTM) for classification purposes. The experiments are conducted using two datasets: UNSW NB-15 and CICIDS 2017. The results obtained demonstrate that the proposed methods achieve an accuracy of 96% with the UNSW NB-15 dataset and 99% with the CICIDS 2017 dataset. These findings indicate an improvement of 3% and 1% respectively compared to existing literature.

Downloads

Download data is not yet available.

Author Biographies

Al-Ogaidi Ali Hameed Khalaf, Department of Computer Science, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

gs62071@student.upm.edu.my

Raihani Mohamed, Department of Computer Science, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

raihanimohamed@upm.edu.my

Abdul Rafiez Abdul Raziff, Kulliyyah of Information and Communication Technology, International Islamic University Malaysia, 50728 Kuala Lumpur, Malaysia

rafiez@iium.edu.my

Downloads

Published

2024-02-13

How to Cite

Al-Ogaidi Ali Hameed Khalaf, Raihani Mohamed, & Abdul Rafiez Abdul Raziff. (2024). Detection Model for Ambiguous Intrusion using SMOTE and LSTM for Network Security. Journal of Advanced Research in Applied Sciences and Engineering Technology, 39(2), 191–203. https://doi.org/10.37934/araset.39.2.191203

Issue

Section

Articles