A River Segmentation for Flood Monitoring with Atrous Convolution via DeepLabv3

Authors

  • Nur Adilah Hamid Electrical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia
  • Mohd Ikmal Fitri Maruzuki Electrical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia
  • Ahmad Puad Ismail Electrical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia
  • Saiful Zaimy Yahaya Electrical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia
  • Fadzil Ahmad Electrical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia
  • Harits Ar Rosyid Jurusan Teknik Elektro, Fakultas Teknik, Universitas Negeri Malang, Kota Malang, Jawa Timur 65145, Indonesia
  • Zainal Hisham Che Soh Electrical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia

DOI:

https://doi.org/10.37934/araset.56.2.6273

Keywords:

Image segmentation, River water segmentation, Fully convolutional networks, DeepLabv3, Flood management

Abstract

Flood has been identified as a common natural disaster for years. This is the evidence of the effect cause by heavy rainfall which then lead to damages of infrastructure and deaths. The presence of this natural disasters can cause a lot of problems and risk especially to human being. The prevention of flood is almost impossible as it is a natural phenomenon. In this work, we proposed a water segmentation technique to analyses the images of river in term of water at the area from the camera which will automatically detect anomalies such as sudden water increase. The Deep Learning segmentation algorithm DeepLabv3 and DeepLabv3+ are trained and tested for the task of water segmentation and the performances are compared with previous works. In our finding, the accuracy obtained by our proposed method DeepLabv3 is 97.07% thus achieved the state of art in performing the task of water segmentation. Thus, DeepLabv3 model is suit and practical in the solving the flood issue.

Downloads

Download data is not yet available.

Author Biographies

Nur Adilah Hamid, Electrical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia

2017668654@student.uitm.edu.my

Mohd Ikmal Fitri Maruzuki, Electrical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia

ikmalf@uitm.edu.my

Ahmad Puad Ismail, Electrical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia

ahmadpuad127@uitm.edu.my

Saiful Zaimy Yahaya, Electrical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia

saiful053@uitm.edu.my

Fadzil Ahmad, Electrical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia

fadzilahmad@uitm.edu.my

Harits Ar Rosyid, Jurusan Teknik Elektro, Fakultas Teknik, Universitas Negeri Malang, Kota Malang, Jawa Timur 65145, Indonesia

harits.ar.ft@um.ac.id

Zainal Hisham Che Soh, Electrical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia

zainal872@uitm.edu.my

Downloads

Published

2024-10-08

How to Cite

Hamid, N. A., Maruzuki, M. I. F., Ismail, A. P., Yahaya, S. Z., Ahmad, F., Rosyid, H. A., & Che Soh, Z. H. (2024). A River Segmentation for Flood Monitoring with Atrous Convolution via DeepLabv3. Journal of Advanced Research in Applied Sciences and Engineering Technology, 62–73. https://doi.org/10.37934/araset.56.2.6273

Issue

Section

Articles

Most read articles by the same author(s)