Simulation of Dissimilar (Al1100-Cu) Friction Stir Welding using Convection Coefficient Between Workpiece and Backing Plate Based on Its Deformation

Authors

  • Fathi Robbany Department of Mechanical Engineering, University of Brawijaya, Malang, Indonesia
  • Djarot Bangun Darmadi Department of Mechanical Engineering, University of Brawijaya, Malang, Indonesia
  • Yudy Surya Irawan Department of Mechanical Engineering, University of Brawijaya, Malang, Indonesia
  • Moch. Agus Choiron Department of Mechanical Engineering, University of Brawijaya, Malang, Indonesia
  • Widia Setiawan Department of Mechanical Engineering, Vocational College Gadjah Mada University, Yogyakarta, Indonesia
  • Marco Talice PMSQUARED ENGINEERING S.r.l.s., Cagliari, Italy

DOI:

https://doi.org/10.37934/arnht.25.1.3752

Keywords:

Computational fluid dynamics, Dissimilar, Friction stir welding, Modeling

Abstract

Friction stir welding is considered a solution to conventional welding issues, particularly when dissimilar materials are involved. The implication of complex phenomena encourages researchers to utilize numerical simulations in their research. Despite the backing plate being the most significant cause of heat loss, researchers tend to simplify the heat transfer coefficient to the backing plate without considering the deformation pattern of the workpiece. The pressure applied by the tool increases the contact conductance between the workpiece and the backing plate, influencing heat transfer coefficient distribution. This paper aims to model the FSW process involving the deformation of the workpiece. A backing plate in the form of asbestos is employed to capture the deformation of the workpiece on an experimental test. Quadratic polynomial equations are used as an approach to measuring deformation patterns. Based on the results of this study, the coefficient convection distribution based on the deformation pattern produced a temperature history close to the experimental results. Validation of material flow in the model was also carried out.

Downloads

Download data is not yet available.

Author Biographies

Fathi Robbany, Department of Mechanical Engineering, University of Brawijaya, Malang, Indonesia

fathirobbany@gmail.com

Djarot Bangun Darmadi, Department of Mechanical Engineering, University of Brawijaya, Malang, Indonesia

b_darmadi_djarot@ub.ac.id

Yudy Surya Irawan, Department of Mechanical Engineering, University of Brawijaya, Malang, Indonesia

yudysir@ub.ac.id

Moch. Agus Choiron, Department of Mechanical Engineering, University of Brawijaya, Malang, Indonesia

agus_choiron@ub.ac.id

Widia Setiawan, Department of Mechanical Engineering, Vocational College Gadjah Mada University, Yogyakarta, Indonesia

widia_s@ugm.ac.id

Marco Talice, PMSQUARED ENGINEERING S.r.l.s., Cagliari, Italy

m.talice@pm2engineering.com

References

Rajendran, Ajith Raj, Mohammed Fahad, Dev Anand Manoharan, Azeem Hafiz Parayil Ajmal, Niaz Abdul Salam, and Jayaram Vijayan. "Investigation of Intermetallic Compound Formation in Dissimilar Metal Welds between Copper and Stainless Steel using Gas Tungsten Arc Welding." Journal of Advanced Research in Applied Mechanics 114, no. 1 (2024): 163-172. https://doi.org/10.37934/aram.114.1.163172

Islam, M. R., M. Ishak, L. H. Shah, S. R. A. Idris, and C. Meriç. "Dissimilar welding of A7075-T651 and AZ31B alloys by gas metal arc plug welding method." The International Journal of Advanced Manufacturing Technology 88 (2017): 2773-2783. https://doi.org/10.1007/s00170-016-8993-6 DOI: https://doi.org/10.1007/s00170-016-8993-6

Raj, Sanjay, and Pankaj Biswas. "Experimental investigation of the effect of induction preheating on the microstructure evolution and corrosion behaviour of dissimilar FSW (IN718 and SS316L) joints." Journal of Manufacturing Processes 95 (2023): 143-159. https://doi.org/10.1016/j.jmapro.2023.04.021 DOI: https://doi.org/10.1016/j.jmapro.2023.04.021

Xue, P., D. R. Ni, D. Wang, B. L. Xiao, and Z. Y. Ma. "Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar Al–Cu joints." Materials science and engineering: A 528, no. 13-14 (2011): 4683-4689. https://doi.org/10.1016/j.msea.2011.02.067 DOI: https://doi.org/10.1016/j.msea.2011.02.067

Dhara, Sisir, and Abhishek Das. "Impact of ultrasonic welding on multi-layered Al–Cu joint for electric vehicle battery applications: A layer-wise microstructural analysis." Materials Science and Engineering: A 791 (2020): 139795. https://doi.org/10.1016/j.msea.2020.139795 DOI: https://doi.org/10.1016/j.msea.2020.139795

Feng, Ji, Xue Songbai, and Dai Wei. "Reliability studies of Cu/Al joints brazed with Zn–Al–Ce filler metals." Materials & Design 42 (2012): 156-163. https://doi.org/10.1016/j.matdes.2012.05.028 DOI: https://doi.org/10.1016/j.matdes.2012.05.028

Tavassolimanesh, Ahmad, and Ali Alavi Nia. "A new approach for manufacturing copper-clad aluminum bimetallic tubes by friction stir welding (FSW)." Journal of Manufacturing Processes 30 (2017): 374-384. https://doi.org/10.1016/j.jmapro.2017.10.010 DOI: https://doi.org/10.1016/j.jmapro.2017.10.010

Darmadi, Djarot B., and Marco Talice. "Improving the strength of friction stir welded joint by double side friction welding and varying pin geometry." Engineering Science and Technology, an International Journal 24, no. 3 (2021): 637-647. https://doi.org/10.1016/j.jestch.2020.11.001 DOI: https://doi.org/10.1016/j.jestch.2020.11.001

He, Xiaocong, Fengshou Gu, and Andrew Ball. "A review of numerical analysis of friction stir welding." Progress in Materials Science 65 (2014): 1-66. https://doi.org/10.1016/j.pmatsci.2014.03.003 DOI: https://doi.org/10.1016/j.pmatsci.2014.03.003

Dialami, Narges, Michèle Chiumenti, M. Cervera, A. Segatori, and W. Osikowicz. "Enhanced friction model for Friction Stir Welding (FSW) analysis: Simulation and experimental validation." International Journal of Mechanical Sciences 133 (2017): 555-567. https://doi.org/10.1016/j.ijmecsci.2017.09.022 DOI: https://doi.org/10.1016/j.ijmecsci.2017.09.022

Chen, Jie, Xue Wang, Lei Shi, Chuansong Wu, Huijie Liu, and Gaoqiang Chen. "Numerical simulation of weld formation in friction stir welding based on non-uniform tool-workpiece interaction: An effect of tool pin size." Journal of Manufacturing Processes 86 (2023): 85-97. https://doi.org/10.1016/j.jmapro.2022.12.052 DOI: https://doi.org/10.1016/j.jmapro.2022.12.052

Santosa, I. Dewa Made Cipta, I. Gede Nyoman Suta Waisnawa, Putu Wijaya Sunu, I. Wayan Temaja, and Liang Li. "CFD Air Flow Evaluation of Finned Tube Evaporator for Refrigerated Display Cabinet Application." CFD Letters 16, no. 9 (2024): 52-63. https://doi.org/10.37934/cfdl.16.9.5263 DOI: https://doi.org/10.37934/cfdl.16.9.5263

Bindu, M. D., P. S. Tide, and A. B. Bhasi. "Numerical Studies on Temperature and Material Flow During Friction Stir Welding using Different Tool Pin Profiles." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 83, no. 1 (2021): 91-104. https://doi.org/10.37934/arfmts.83.1.91104 DOI: https://doi.org/10.37934/arfmts.83.1.91104

Larsen, Anders, Mathias Stolpe, and Jesper Henri Hattel. "Estimating the workpiece-backing plate heat transfer coefficient in friction stirwelding." Engineering Computations: International Journal for Computer-Aided Engineering and Software 29, no. 1 (2012): 65-82. https://doi.org/10.1108/02644401211190573 DOI: https://doi.org/10.1108/02644401211190573

Meyghani, Bahman, Mokhtar Awang, and C. S. Wu. "Finite element modeling of friction stir welding (FSW) on a complex curved plate." Journal of Advanced Joining Processes 1 (2020): 100007. https://doi.org/10.1016/j.jajp.2020.100007 DOI: https://doi.org/10.1016/j.jajp.2020.100007

Nandan, R., T. J. Lienert, and T. DebRoy. "Toward reliable calculations of heat and plastic flow during friction stir welding of Ti-6Al-4V alloy." International Journal of Materials Research 99, no. 4 (2008): 434-444. https://doi.org/10.3139/146.101655 DOI: https://doi.org/10.3139/146.101655

Rosochowska, M., K. Chodnikiewicz, and R. Balendra. "A new method of measuring thermal contact conductance." Journal of materials processing technology 145, no. 2 (2004): 207-214. https://doi.org/10.1016/S0924-0136(03)00671-X DOI: https://doi.org/10.1016/S0924-0136(03)00671-X

Hasan, Mohammed M., M. Ishak, and M. R. M. Rejab. "Effect of backing material and clamping system on the tensile strength of dissimilar AA7075-AA2024 friction stir welds." The International Journal of Advanced Manufacturing Technology 91 (2017): 3991-4007. https://doi.org/10.1007/s00170-017-0033-7 DOI: https://doi.org/10.1007/s00170-017-0033-7

Krishnan, Girish, and Ankur Jain. "Transient temperature distribution in a multilayer semiconductor device with dynamic thermal load and non-uniform thermal contact resistance between layers." International Journal of Heat and Mass Transfer 214 (2023): 124374. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124374 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2023.124374

Gilmore, David G., ed. Spacecraft thermal control handbook: cryogenics. Vol. 2. Aiaa, 2002.

An, Ben, Linxue An, Yuping Huang, Jiaqi Li, Ben Guan, and Rui Li. "The influence of surface topography on thermal contact resistance of 7075-T6/beryllium bronze." Thermal Science and Engineering Progress 46 (2023): 102196. https://doi.org/10.1016/j.tsep.2023.102196 DOI: https://doi.org/10.1016/j.tsep.2023.102196

Upadhyay, Piyush, and Anthony P. Reynolds. "Effects of forge axis force and backing plate thermal diffusivity on FSW of AA6056." Materials Science and Engineering: A 558 (2012): 394-402. https://doi.org/10.1016/j.msea.2012.08.018 DOI: https://doi.org/10.1016/j.msea.2012.08.018

Kulkarni, B. S., S. B. Pankade, S. R. Andhale, and C. L. Gogte. "Effect of backing plate material diffusivity on microstructure, mechanical properties of friction stir welded joints: a review." Procedia Manufacturing 20 (2018): 59-64. https://doi.org/10.1016/j.promfg.2018.02.008 DOI: https://doi.org/10.1016/j.promfg.2018.02.008

Choi, Woong Jo, Justin D. Morrow, Frank E. Pfefferkorn, and Michael R. Zinn. "The effects of welding parameters and backing plate diffusivity on energy consumption in friction stir welding." Procedia Manufacturing 10 (2017): 382-391. https://doi.org/10.1016/j.promfg.2017.07.011 DOI: https://doi.org/10.1016/j.promfg.2017.07.011

Imam, Murshid, Vikranth Racherla, and Kajal Biswas. "Effect of backing plate material in friction stir butt and lap welding of 6063-T4 aluminium alloy." The International Journal of Advanced Manufacturing Technology 77 (2015): 2181-2195. https://doi.org/10.1007/s00170-014-6617-6 DOI: https://doi.org/10.1007/s00170-014-6617-6

Kulkarni, Bhardwaj, and Sandeep Pankade. "Effects of different backing plates and tool design on the flash defect developed during friction stir welding of AA6061 aluminium alloy." (2022). https://doi.org/10.21203/rs.3.rs-1968882/v1 DOI: https://doi.org/10.21203/rs.3.rs-1968882/v1

Flint, T. F., J. A. Francis, and M. C. Smith. "A semi-analytical solution for the transient temperature field generated by a volumetric heat source developed for the simulation of friction stir welding." International Journal of Thermal Sciences 138 (2019): 586-595. https://doi.org/10.1016/j.ijthermalsci.2018.12.049 DOI: https://doi.org/10.1016/j.ijthermalsci.2018.12.049

Khodir, Saad Ahmed, Toshiya Shibayanagi, and Masaaki Naka. "Control of hardness distribution in friction stir welded AA2024-T3 aluminum alloy." Materials transactions 47, no. 6 (2006): 1560-1567. https://doi.org/10.2320/matertrans.47.1560 DOI: https://doi.org/10.2320/matertrans.47.1560

Upadhyay, Piyush, and Anthony Reynolds. "Effect of backing plate thermal property on friction stir welding of 25-mm-thick AA6061." Metallurgical and Materials Transactions A 45 (2014): 2091-2100. https://doi.org/10.1007/s11661-013-2121-0 DOI: https://doi.org/10.1007/s11661-013-2121-0

Kah, Paul, Richard Rajan, Jukka Martikainen, and Raimo Suoranta. "Investigation of weld defects in friction-stir welding and fusion welding of aluminium alloys." International Journal of Mechanical and Materials Engineering 10 (2015): 1-10. https://doi.org/10.1186/s40712-015-0053-8 DOI: https://doi.org/10.1186/s40712-015-0053-8

Shankar, Sachindra, Pedro Vilaça, Priyabrat Dash, Somnath Chattopadhyaya, and Sergej Hloch. "Joint strength evaluation of friction stir welded Al-Cu dissimilar alloys." Measurement 146 (2019): 892-902. https://doi.org/10.1016/j.measurement.2019.07.019 DOI: https://doi.org/10.1016/j.measurement.2019.07.019

Sheppard, T., and D. S. Wright. "Determination of flow stress: Part 1 constitutive equation for aluminium alloys at elevated temperatures." Metals Technology 6, no. 1 (1979): 215-223. https://doi.org/10.1179/030716979803276264 DOI: https://doi.org/10.1179/030716979803276264

Yang, C. L., C. S. Wu, and X. Q. Lv. "Numerical analysis of mass transfer and material mixing in friction stir welding of aluminum/magnesium alloys." Journal of Manufacturing Processes 32 (2018): 380-394. https://doi.org/10.1016/j.jmapro.2018.03.009 DOI: https://doi.org/10.1016/j.jmapro.2018.03.009

Anwari, Muhammad Izhar Hishyam, Nor Afzanizam Samiran, Izuan Amin Ishak, and Muhammad Suhail Sahul Hamid. 2024. “CFD Modelling of Plasma Downdraft Coal Gasification Process: Effect of Throat Diameter on the Produced Syngas Composition”. Journal of Advanced Research in Numerical Heat Transfer 22 (1):14-30. https://doi.org/10.37934/arnht.22.1.1430 DOI: https://doi.org/10.37934/arnht.22.1.1430

Nandan, R., B. Prabu, A. De, and T. Debroy. "Improving reliability of heat transfer and materials flow calculations during friction stir welding of dissimilar aluminum alloys." WELDING JOURNAL-NEW YORK- 86, no. 10 (2007): 313.

Cho, Hoon-Hwe, Sung-Tae Hong, Jae-Hun Roh, Hyun-Sik Choi, Suk Hoon Kang, Russell J. Steel, and Heung Nam Han. "Three-dimensional numerical and experimental investigation on friction stir welding processes of ferritic stainless steel." Acta Materialia 61, no. 7 (2013): 2649-2661. https://doi.org/10.1016/j.actamat.2013.01.045 DOI: https://doi.org/10.1016/j.actamat.2013.01.045

Standard, A. S. T. M. "Standard test methods for tension testing of metallic materials." ASTM International: West Conshohocken, PA, USA (2013). https://doi.org/10.1520/e0008_e0008m-13a DOI: https://doi.org/10.1520/E0008_E0008M-13A

Darmadi, Djarot B. "Incorporating Aged Martensite Model in Residual Stress Prediction of Ferritic Steels Girth Weld." FME Transactions 47, no. 4 (2019). https://doi.org/10.5937/fmet1904901D DOI: https://doi.org/10.5937/fmet1904901D

Jagadeesha, C. B. "Flow analysis of materials in friction stir welding." Journal of the Mechanical Behavior of Materials 27, no. 3-4 (2018): 20180020. https://doi.org/10.1515/jmbm-2018-0020 DOI: https://doi.org/10.1515/jmbm-2018-0020

Colligan, K. "Material flow behavior during friction welding of aluminum." Weld J 75, no. 7 (1999): 229s-237s.

Krishnan, K. N. "On the formation of onion rings in friction stir welds." Materials science and engineering: A 327, no. 2 (2002): 246-251. https://doi.org/10.1016/S0921-5093(01)01474-5 DOI: https://doi.org/10.1016/S0921-5093(01)01474-5

Published

2024-11-06

How to Cite

Robbany, F., Darmadi, D. B. ., Irawan, Y. S. ., Choiron, M. A. ., Setiawan, W. ., & Talice, M. . (2024). Simulation of Dissimilar (Al1100-Cu) Friction Stir Welding using Convection Coefficient Between Workpiece and Backing Plate Based on Its Deformation. Journal of Advanced Research in Numerical Heat Transfer, 25(1), 37–52. https://doi.org/10.37934/arnht.25.1.3752

Issue

Section

Articles