Influence of Substrate Tilting Angle on Graphene Production through Atmospheric Pressure Chemical Vapor Deposition

Authors

  • Sher Afghan Khan Department of Mechanical Engineering, Faculty of Engineering, IIUM, Gombak Campus, Kuala Lumpur, Malaysia
  • Syed Noh Syed Abu Bakar Department of Mechanical and Aerospace Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Malaysia
  • Muhammad Naqib Osman Department of Mechanical and Aerospace Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Malaysia
  • Mohd Azan Mohammed Sapardi Department of Mechanical and Aerospace Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Malaysia
  • Mohd Hanafi Ani Department of Manufacturing and Materials Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Malaysia
  • Mohd Firdaus Abd Wahab Department of Chemical Engineering and Sustainability, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Malaysia
  • Yose Fachmi Buys Department of Mechanical Engineering, Faculty of Industrial Technology, Universitas Pertamina, Indonesia

DOI:

https://doi.org/10.37934/arnht.27.1.2844

Keywords:

Graphene, Tilting angle, Boundary layer, Vorticity, APCVD

Abstract

An experimental and simulation study of substrate tilting angle in graphene production is presented by applying atmospheric pressure chemical vapor deposition (APCVD). The graphene is produced using APCVD for 8°, 15°, and 60° substrate tilting angles. The Raman characterization was done on all the substrates to see the effect of the substrate tilting angle on the graphene produced. To further understand the result, the heating chamber of the CVD chamber was modeled by using ANSYS® FLUENT. Simulation for the three titling angles was performed using the model. The experimental results showed that the best result was graphene produced by tilting an angle at 15°. The graphene produced has the lowest quality at a 60° tilting angle. This indicates an optimum tilting angle at a lower tilting angle. The simulation revealed the relationship between vorticity and boundary layer thickness to the graphene quality.

Downloads

Download data is not yet available.

Author Biographies

Syed Noh Syed Abu Bakar, Department of Mechanical and Aerospace Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Malaysia

syednoh@iium.edu.my

Muhammad Naqib Osman, Department of Mechanical and Aerospace Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Malaysia

naqibosman@gmail.com

Mohd Azan Mohammed Sapardi, Department of Mechanical and Aerospace Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Malaysia

azan@iium.edu.my

Mohd Hanafi Ani, Department of Manufacturing and Materials Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Malaysia

mhanafi@iium.edu.my

Mohd Firdaus Abd Wahab, Department of Chemical Engineering and Sustainability, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Malaysia

firdaus@iium.edu.my

Yose Fachmi Buys, Department of Mechanical Engineering, Faculty of Industrial Technology, Universitas Pertamina, Indonesia

yose.fachmi@universitaspertamina.ac.id

References

Lee, Changgu, Xiaoding Wei, Jeffrey W. Kysar, and James Hone. "Measurement of the elastic properties and intrinsic strength of monolayer graphene." science 321, no. 5887 (2008): 385-388. https://doi.org/10.1126/science.1157996 DOI: https://doi.org/10.1126/science.1157996

Mayorov, Alexander S., Roman V. Gorbachev, Sergey V. Morozov, Liam Britnell, Rashid Jalil, Leonid A. Ponomarenko, Peter Blake et al. "Micrometer-scale ballistic transport in encapsulated graphene at room temperature." Nano letters 11, no. 6 (2011): 2396-2399. https://doi.org/10.1021/nl200758b DOI: https://doi.org/10.1021/nl200758b

Azam, Mohd Asyadi, Nor Najihah Zulkapli, Norasimah Dorah, Raja Noor Amalina Raja Seman, Mohd Hanafi Ani, Mohd Shukri Sirat, Edhuan Ismail, Fatin Bazilah Fauzi, Mohd Ambri Mohamed, and Burhanuddin Yeop Majlis. "Critical considerations of high quality graphene synthesized by plasma-enhanced chemical vapor deposition for electronic and energy storage devices." ECS Journal of Solid State Science and Technology 6, no. 6 (2017): M3035. https://doi.org/10.1149/2.0031706jss DOI: https://doi.org/10.1149/2.0031706jss

Mishra, Neeraj, John Boeckl, Nunzio Motta, and Francesca Iacopi. "Graphene growth on silicon carbide: A review." physica status solidi (a) 213, no. 9 (2016): 2277-2289. https://doi.org/10.1002/pssa.201600091 DOI: https://doi.org/10.1002/pssa.201600091

Ani, M. H., M. A. Kamarudin, A. H. Ramlan, E. Ismail, M. S. Sirat, M. A. Mohamed, and M. A. Azam. "A critical review on the contributions of chemical and physical factors toward the nucleation and growth of large-area graphene." Journal of materials science 53 (2018): 7095-7111. https://doi.org/10.1007/s10853-018-1994-0 DOI: https://doi.org/10.1007/s10853-018-1994-0

Novoselov, Kostya S., Andre K. Geim, Sergei V. Morozov, De-eng Jiang, Yanshui Zhang, Sergey V. Dubonos, Irina V. Grigorieva, and Alexandr A. Firsov. "Electric field effect in atomically thin carbon films." science 306, no. 5696 (2004): 666-669. https://doi.org/10.1126/science.1102896 DOI: https://doi.org/10.1126/science.1102896

Zhang, Y. I., Luyao Zhang, and Chongwu Zhou. "Review of chemical vapor deposition of graphene and related applications." Accounts of chemical research 46, no. 10 (2013): 2329-2339. https://doi.org/10.1021/ar300203n DOI: https://doi.org/10.1021/ar300203n

Vlassiouk, Ivan, Sergei Smirnov, Murari Regmi, Sumedh P. Surwade, Nishtha Srivastava, Randall Feenstra, Gyula Eres et al. "Graphene nucleation density on copper: fundamental role of background pressure." The Journal of Physical Chemistry C 117, no. 37 (2013): 18919-18926. https://doi.org/10.1021/jp4047648 DOI: https://doi.org/10.1021/jp4047648

Zhang, Jia, PingAn Hu, Xiaona Wang, Zhenlong Wang, Danqin Liu, Bin Yang, and Wenwu Cao. "CVD growth of large area and uniform graphene on tilted copper foil for high performance flexible transparent conductive film." Journal of Materials Chemistry 22, no. 35 (2012): 18283-18290. https://doi.org/10.1039/c2jm33881e DOI: https://doi.org/10.1039/c2jm33881e

Zhang, Yi, Luyao Zhang, Pyojae Kim, Mingyuan Ge, Zhen Li, and Chongwu Zhou. "Vapor trapping growth of single-crystalline graphene flowers: synthesis, morphology, and electronic properties." Nano letters 12, no. 6 (2012): 2810-2816. https://doi.org/10.1021/nl300039a DOI: https://doi.org/10.1021/nl300039a

Vlassiouk, Ivan, Pasquale Fulvio, Harry Meyer, Nick Lavrik, Sheng Dai, Panos Datskos, and Sergei Smirnov. "Large scale atmospheric pressure chemical vapor deposition of graphene." Carbon 54 (2013): 58-67. https://doi.org/10.1016/j.carbon.2012.11.003 DOI: https://doi.org/10.1016/j.carbon.2012.11.003

Fauzi, Fatin Bazilah, Edhuan Ismail, Mohd Hanafi Ani, Syed Noh Syed Abu Bakar, Mohd Ambri Mohamed, Burhanuddin Yeop Majlis, Muhamad Faiz Md Din, and Mohd Asyadi Azam Mohd Abid. "A critical review of the effects of fluid dynamics on graphene growth in atmospheric pressure chemical vapor deposition." Journal of Materials Research 33, no. 9 (2018): 1088-1108. https://doi.org/10.1557/jmr.2018.39 DOI: https://doi.org/10.1557/jmr.2018.39

Gürsoy, Mehmet, Emre Çıtak, and Mustafa Karaman. "Uniform deposition of large-area graphene films on copper using low-pressure chemical vapor deposition technique." Carbon Letters 32, no. 3 (2022): 781-787. https://doi.org/10.1007/s42823-021-00309-3 DOI: https://doi.org/10.1007/s42823-021-00309-3

Lee, Byoungdo, Weishen Chu, and Wei Li. "Effects of process parameters on graphene growth via low-pressure chemical vapor deposition." Journal of Micro-and Nano-Manufacturing 8, no. 3 (2020): 031005. https://doi.org/10.1115/1.4048494 DOI: https://doi.org/10.1115/1.4048494

Yang, Meng, Shinichirou Sasaki, Ken Suzuki, and Hideo Miura. "Control of the nucleation and quality of graphene grown by low-pressure chemical vapor deposition with acetylene." Applied Surface Science 366 (2016): 219-226. https://doi.org/10.1016/j.apsusc.2016.01.089 DOI: https://doi.org/10.1016/j.apsusc.2016.01.089

Borah, Munu, Abhishek K. Pathak, Dilip K. Singh, Prabir Pal, and Sanjay R. Dhakate. "Role of limited hydrogen and flow interval on the growth of single crystal to continuous graphene by low-pressure chemical vapor deposition." Nanotechnology 28, no. 7 (2017): 075602. https://doi.org/10.1088/1361-6528/aa527e DOI: https://doi.org/10.1088/1361-6528/aa527e

Yousefian, Pedram, and Siddha Pimputkar. "Computational fluid dynamics modeling of a new high-pressure chemical vapor deposition reactor design." Journal of Crystal Growth 566 (2021): 126155. https://doi.org/10.1016/j.jcrysgro.2021.126155 DOI: https://doi.org/10.1016/j.jcrysgro.2021.126155

Mueller, Niclas S., Anthony J. Morfa, Daniel Abou-Ras, Valerio Oddone, Tymoteusz Ciuk, and Michael Giersig. "Growing graphene on polycrystalline copper foils by ultra-high vacuum chemical vapor deposition." Carbon 78 (2014): 347-355. https://doi.org/10.1016/j.carbon.2014.07.011 DOI: https://doi.org/10.1016/j.carbon.2014.07.011

Deng, Bing, Zhaowei Xin, Ruiwen Xue, Shishu Zhang, Xiaozhi Xu, Jing Gao, Jilin Tang et al. "Scalable and ultrafast epitaxial growth of single-crystal graphene wafers for electrically tunable liquid-crystal microlens arrays." Science Bulletin 64, no. 10 (2019): 659-668. https://doi.org/10.1016/j.scib.2019.04.030 DOI: https://doi.org/10.1016/j.scib.2019.04.030

Cho, Joon Hyong, Jason J. Gorman, Seung Ryul Na, and Michael Cullinan. "Growth of monolayer graphene on nanoscale copper-nickel alloy thin films." Carbon 115 (2017): 441-448. https://doi.org/10.1016/j.carbon.2017.01.023 DOI: https://doi.org/10.1016/j.carbon.2017.01.023

Wang, Ziwen, Zhongying Xue, Miao Zhang, Yongqiang Wang, Xiaoming Xie, Paul K. Chu, Peng Zhou, Zengfeng Di, and Xi Wang. "Germanium‐assisted direct growth of graphene on arbitrary dielectric substrates for heating devices." Small 13, no. 28 (2017): 1700929. https://doi.org/10.1002/smll.201700929 DOI: https://doi.org/10.1002/smll.201700929

Deng, Bing, Zhenqian Pang, Shulin Chen, Xin Li, Caixia Meng, Jiayu Li, Mengxi Liu et al. "Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates." ACS nano 11, no. 12 (2017): 12337-12345. https://doi.org/10.1021/acsnano.7b06196 DOI: https://doi.org/10.1021/acsnano.7b06196

Zakar, Eugene, A. Glen Birdwell, Kevin Hauri, Richard X. Fu, Cheng Tan, and Madan Dubey. "Controlling defects in fine-grained sputtered nickel catalyst for graphene growth." Journal of Vacuum Science & Technology B 36, no. 2 (2018). https://doi.org/10.1116/1.4998441 DOI: https://doi.org/10.1116/1.4998441

Lavin-Lopez, M. P., J. L. Valverde, S. Ordoñez-Lozoya, A. Paton-Carrero, and A. Romero. "Role of inert gas in the Cvd-graphene synthesis over polycrystalline nickel foils." Materials Chemistry and Physics 222 (2019): 173-180. https://doi.org/10.1016/j.matchemphys.2018.09.083 DOI: https://doi.org/10.1016/j.matchemphys.2018.09.083

Yoon, Hahnjoo, Dong Su Shin, Taek Gon Kim, Dohyun Kim, and Jinsub Park. "Facile synthesis of graphene on Cu nanowires via low-temperature thermal CVD for the transparent conductive electrode." ACS Sustainable Chemistry & Engineering 6, no. 11 (2018): 13888-13896. https://doi.org/10.1021/acssuschemeng.8b02135 DOI: https://doi.org/10.1021/acssuschemeng.8b02135

Martin, M-B., B. Dlubak, R. S. Weatherup, M. Piquemal-Banci, Heejun Yang, Raoul Blume, Robert Schlögl et al. "Protecting nickel with graphene spin-filtering membranes: A single layer is enough." Applied Physics Letters 107, no. 1 (2015). https://doi.org/10.1063/1.4923401 DOI: https://doi.org/10.1063/1.4923401

Weatherup, Robert S., Bruno Dlubak, and Stephan Hofmann. "Kinetic control of catalytic CVD for high-quality graphene at low temperatures." ACS nano 6, no. 11 (2012): 9996-10003. https://doi.org/10.1021/nn303674g DOI: https://doi.org/10.1021/nn303674g

Sun, Xiao, Li Lin, Luzhao Sun, Jincan Zhang, Dingran Rui, Jiayu Li, Mingzhan Wang et al. "Low‐temperature and rapid growth of large single‐crystalline graphene with ethane." Small 14, no. 3 (2018): 1702916. https://doi.org/10.1002/smll.201702916 DOI: https://doi.org/10.1002/smll.201870011

Jang, Jisu, Myungwoo Son, Sunki Chung, Kihyeun Kim, Chunhum Cho, Byoung Hun Lee, and Moon-Ho Ham. "Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure." Scientific reports 5, no. 1 (2015): 17955. https://doi.org/10.1038/srep17955 DOI: https://doi.org/10.1038/srep17955

Zheng, Li, Xinhong Cheng, Peiyi Ye, Lingyan Shen, Qian Wang, Dongliang Zhang, Ziyue Gu, Wen Zhou, Dengpeng Wu, and Yuehui Yu. "Decreasing graphene synthesis temperature by catalytic metal engineering and thermal processing." RSC advances 8, no. 3 (2018): 1477-1480. https://doi.org/10.1039/C7RA11654C DOI: https://doi.org/10.1039/C7RA11654C

Lampert, Lester F., Roman Caudillo, Thomas Lindner, and Jun Jiao. "C-plane sapphire and catalyst confinement enable wafer-scale high-quality graphene growth." The Journal of Physical Chemistry C 120, no. 46 (2016): 26498-26507. https://doi.org/10.1021/acs.jpcc.6b06459 DOI: https://doi.org/10.1021/acs.jpcc.6b06459

Fauzi, Fatin Bazilah, Edhuan Ismail, Muhammad Naqib Osman, Muhammad Suffian Rosli, Ahmad Faris Ismail, Mohd Ambri Mohamed, Syed Noh Syed Abu Bakar, and Mohd Hanafi Ani. "Influence of mixed convection in atmospheric pressure chemical vapor deposition of graphene growth." Materials today: proceedings 7 (2019): 638-645. https://doi.org/10.1016/j.matpr.2018.12.055 DOI: https://doi.org/10.1016/j.matpr.2018.12.055

Kim, Keun Soo, Yue Zhao, Houk Jang, Sang Yoon Lee, Jong Min Kim, Kwang S. Kim, Jong-Hyun Ahn, Philip Kim, Jae-Young Choi, and Byung Hee Hong. "Large-scale pattern growth of graphene films for stretchable transparent electrodes." nature 457, no. 7230 (2009): 706-710. https://doi.org/10.1038/nature07719 DOI: https://doi.org/10.1038/nature07719

Li, Xuesong, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah, Dongxing Yang, Richard Piner et al. "Large-area synthesis of high-quality and uniform graphene films on copper foils." science 324, no. 5932 (2009): 1312-1314. https://doi.org/10.1126/science.1171245 DOI: https://doi.org/10.1126/science.1171245

Reina, Alfonso, Stefan Thiele, Xiaoting Jia, Sreekar Bhaviripudi, Mildred S. Dresselhaus, Juergen A. Schaefer, and Jing Kong. "Growth of large-area single-and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces." Nano Research 2 (2009): 509-516. https://doi.org/10.1007/s12274-009-9059-y DOI: https://doi.org/10.1007/s12274-009-9059-y

Reina, Alfonso, Xiaoting Jia, John Ho, Daniel Nezich, Hyungbin Son, Vladimir Bulovic, Mildred S. Dresselhaus, and Jing Kong*. "Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition." Nano letters 9, no. 8 (2009): 3087-3087. https://doi.org/10.1021/nl901829a DOI: https://doi.org/10.1021/nl901829a

Sutter, Peter W., Jan-Ingo Flege, and Eli A. Sutter. "Epitaxial graphene on ruthenium." Nature materials 7, no. 5 (2008): 406-411. https://doi.org/10.1038/nmat2166 DOI: https://doi.org/10.1038/nmat2166

Yang, K., W. D. Xiao, Y. H. Jiang, H. G. Zhang, L. W. Liu, J. H. Mao, H. T. Zhou, S. X. Du, and H-J. Gao. "Molecule–substrate coupling between metal phthalocyanines and epitaxial graphene grown on Ru (0001) and Pt (111)." The Journal of Physical Chemistry C 116, no. 26 (2012): 14052-14056. https://doi.org/10.1021/jp304068a DOI: https://doi.org/10.1021/jp304068a

Vaari, J., J. Lahtinen, and P. Hautojärvi. "The adsorption and decomposition of acetylene on clean and K-covered Co (0001)." Catalysis letters 44, no. 1 (1997): 43-49. https://doi.org/10.1023/A:1018972924563 DOI: https://doi.org/10.1023/A:1018972924563

Kim, Eunho, Hyosub An, Hyunchul Jang, Won‐Ju Cho, Naesung Lee, Wan‐Gyu Lee, and Jongwan Jung. "Growth of Few‐Layer Graphene on a Thin Cobalt Film on a Si/SiO2 Substrate." Chemical Vapor Deposition 17, no. 1‐3 (2011): 9-14. https://doi.org/10.1002/cvde.201004296 DOI: https://doi.org/10.1002/cvde.201004296

Sutter, Peter, Jerzy T. Sadowski, and Eli Sutter. "Graphene on Pt (111): Growth and substrate interaction." Physical Review B—Condensed Matter and Materials Physics 80, no. 24 (2009): 245411. https://doi.org/10.1103/PhysRevB.80.245411 DOI: https://doi.org/10.1103/PhysRevB.80.245411

Coraux, Johann, Martin Engler, Carsten Busse, Dirk Wall, Niemma Buckanie, Frank-J. Meyer Zu Heringdorf, Raoul Van Gastel, Bene Poelsema, and Thomas Michely. "Growth of graphene on Ir (111)." New Journal of Physics 11 (2009): 023006. https://doi.org/10.1088/1367-2630/11/2/023006 DOI: https://doi.org/10.1088/1367-2630/11/2/023006

Shinde, Dhanraj B., Pavan Chaturvedi, Ivan V. Vlassiouk, and Sergei N. Smirnov. "Unique role of dimeric carbon precursors in graphene growth by chemical vapor deposition." Carbon Trends 5 (2021): 100093. https://doi.org/10.1016/j.cartre.2021.100093 DOI: https://doi.org/10.1016/j.cartre.2021.100093

Zietz, Otto, Samuel Olson, Brendan Coyne, Yilian Liu, and Jun Jiao. "Characterization and manipulation of carbon precursor species during plasma enhanced chemical vapor deposition of graphene." Nanomaterials 10, no. 11 (2020): 2235. https://doi.org/10.3390/nano10112235 DOI: https://doi.org/10.3390/nano10112235

Kondrashov, Ivan, Maxim Komlenok, Pavel Pivovarov, Sergey Savin, Elena Obraztsova, and Maxim Rybin. "Preparation of copper surface for the synthesis of single-layer graphene." Nanomaterials 11, no. 5 (2021): 1071. https://doi.org/10.3390/nano11051071 DOI: https://doi.org/10.3390/nano11051071

Kostogrud, I. A., E. V. Boyko, and D. V. Smovzh. "Effect of hydrogen concentration on CVD synthesis of graphene." In Journal of Physics: Conference Series, vol. 1382, no. 1, p. 012157. IOP Publishing, 2019. https://doi.org/10.1088/1742-6596/1382/1/012157 DOI: https://doi.org/10.1088/1742-6596/1382/1/012157

Nalini, Savitha, Subin Thomas, M. K. Jayaraj, and K. Rajeev Kumar. "Analysis of graphene films grown on copper foil at 845° C by intermediate pressure chemical vapor deposition." Materials Research Express 5, no. 11 (2018): 115604. https://doi.org/10.1088/2053-1591/aadec4 DOI: https://doi.org/10.1088/2053-1591/aadec4

Eversteyn, F. C., P. J. W. Severin, C. H. J. vd Brekel, and H. L. Peek. "A stagnant layer model for the epitaxial growth of silicon from silane in a horizontal reactor." Journal of The Electrochemical Society 117, no. 7 (1970): 925. https://doi.org/10.1149/1.2407685 DOI: https://doi.org/10.1149/1.2407685

Kleijn, C. R., Th H. Van Der Meer, and C. J. Hoogendoorn. "A mathematical model for LPCVD in a single wafer reactor." Journal of The Electrochemical Society 136, no. 11 (1989): 3423. https://doi.org/10.1149/1.2096465 DOI: https://doi.org/10.1149/1.2096465

Kleijn, C. R. "A mathematical model of the hydrodynamics and gas‐phase reactions in silicon LPCVD in a single‐wafer reactor." Journal of the Electrochemical Society 138, no. 7 (1991): 2190. https://doi.org/10.1149/1.2085948 DOI: https://doi.org/10.1149/1.2085948

Visser, E. P., C. R. Kleijn, C. A. M. Govers, C. J. Hoogendoorn, and L. J. Giling. "Return flows in horizontal MOCVD reactors studied with the use of TiO2 particle injection and numerical calculations." Journal of Crystal Growth 94, no. 4 (1989): 929-946. https://doi.org/10.1016/0022-0248(89)90127-9 DOI: https://doi.org/10.1016/0022-0248(89)90127-9

Giling, L. J. "Temperatures and flows in horizontal epi reactors." Le Journal de Physique Colloques 43, no. C5 (1982): C5-235. https://doi.org/10.1051/jphyscol:1982528 DOI: https://doi.org/10.1051/jphyscol:1982528

Giling, L. J. "Gas flow patterns in horizontal epitaxial reactor cells observed by interference holography." Journal of The Electrochemical Society 129, no. 3 (1982): 634. https://doi.org/10.1149/1.2123939 DOI: https://doi.org/10.1149/1.2123939

Coltrin, Michael E., Robert J. Kee, and James A. Miller. "A mathematical model of the coupled fluid mechanics and chemical kinetics in a chemical vapor deposition reactor." Journal of the Electrochemical Society 131, no. 2 (1984): 425. https://doi.org/10.1149/1.2115598 DOI: https://doi.org/10.1149/1.2115598

Fauzi, Fatin Bazilah, Edhuan Ismail, Syed Noh Syed Abu Bakar, Ahmad Faris Ismail, Mohd Ambri Mohamed, Muhamad Faiz Md Din, Suhaimi Illias, and Mohd Hanafi Ani. "The role of gas-phase dynamics in interfacial phenomena during few-layer graphene growth through atmospheric pressure chemical vapour deposition." Physical Chemistry Chemical Physics 22, no. 6 (2020): 3481-3489. https://doi.org/10.1039/C9CP05346H DOI: https://doi.org/10.1039/C9CP05346H

Li, Gan, Sheng-Hong Huang, and Zhenyu Li. "Gas-phase dynamics in graphene growth by chemical vapour deposition." Physical Chemistry Chemical Physics 17, no. 35 (2015): 22832-22836. https://doi.org/10.1039/C5CP02301G DOI: https://doi.org/10.1039/C5CP02301G

Osman, Muhammad Naqib, Mohd Hanafi Ani, and Syed Noh Syed Abu Bakar. "Substrate Placement inside CVD Tube for Graphene Production." In Materials Science Forum, vol. 981, pp. 84-91. Trans Tech Publications Ltd, 2020. https://doi.org/10.4028/www.scientific.net/MSF.981.84 DOI: https://doi.org/10.4028/www.scientific.net/MSF.981.84

Bulsari, Abhay B., Mark E. Orazem, and James G. Rice. "The influence of axial diffusion on convective heat and mass transfer in a horizontal CVD reactor." Journal of crystal growth 92, no. 1-2 (1988): 294-310. https://doi.org/10.1016/0022-0248(88)90462-9 DOI: https://doi.org/10.1016/0022-0248(88)90462-9

Fotiadis, Dimitrios I., Martin Boekholt, Klavs F. Jensen, and Wolfgang Richter. "Flow and heat transfer in CVD reactors: comparison of Raman temperature measurements and finite element model predictions." Journal of crystal growth 100, no. 3 (1990): 577-599. https://doi.org/10.1016/0022-0248(90)90257-L DOI: https://doi.org/10.1016/0022-0248(90)90257-L

Khanafer, K., and M. F. Lightstone. "Computational modeling of transport phenomena in chemical vapor deposition." Heat and mass transfer 41 (2005): 483-494. https://doi.org/10.1007/s00231-004-0571-z DOI: https://doi.org/10.1007/s00231-004-0571-z

Cheng, T. S., and M. C. Hsiao. "Numerical investigations of geometric effects on flow and thermal fields in a horizontal CVD reactor." Journal of crystal growth 310, no. 12 (2008): 3097-3106. https://doi.org/10.1016/j.jcrysgro.2008.03.007 DOI: https://doi.org/10.1016/j.jcrysgro.2008.03.007

Zhang, Pan, Wang Weiwen, Guanghui Cheng, and Li Jianlong. "Effect of boundary layers on polycrystalline silicon chemical vapor deposition in a trichlorosilane and hydrogen system." Chinese Journal of Chemical Engineering 19, no. 1 (2011): 1-9. https://doi.org/10.1016/S1004-9541(09)60169-5 DOI: https://doi.org/10.1016/S1004-9541(09)60169-5

Bhaviripudi, Sreekar, Xiaoting Jia, Mildred S. Dresselhaus, and Jing Kong. "Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst." Nano letters 10, no. 10 (2010): 4128-4133. https://doi.org/10.1021/nl102355e DOI: https://doi.org/10.1021/nl102355e

Łach, Łukasz, and Dmytro Svyetlichnyy. "Recent Progress in Heat and Mass Transfer Modeling for Chemical Vapor Deposition Processes." Energies 17, no. 13 (2024): 3267. https://doi.org/10.3390/en17133267 DOI: https://doi.org/10.3390/en17133267

Bokobza, Liliane, Jean-Luc Bruneel, and Michel Couzi. "Raman spectroscopy as a tool for the analysis of carbon-based materials (highly oriented pyrolitic graphite, multilayer graphene and multiwall carbon nanotubes) and of some of their elastomeric composites." Vibrational Spectroscopy 74 (2014): 57-63. https://doi.org/10.1016/j.vibspec.2014.07.009 DOI: https://doi.org/10.1016/j.vibspec.2014.07.009

McComas, S. T., and Ernst Rudolf Georg Eckert. "Combined free and forced convection in a horizontal circular tube." (1966): 147-152. https://doi.org/10.1115/1.3691494 DOI: https://doi.org/10.1115/1.3691494

Chatterjee, Shahana, Thomas Abadie, Meihui Wang, Omar K. Matar, and Rodney S. Ruoff. "Repeatability and Reproducibility in the Chemical Vapor Deposition of 2D Films: A Physics-Driven Exploration of the Reactor Black Box." Chemistry of Materials 36, no. 3 (2024): 1290-1298. https://doi.org/10.1021/acs.chemmater.3c02361 DOI: https://doi.org/10.1021/acs.chemmater.3c02361

Li, Zhancheng, Wenhua Zhang, Xiaodong Fan, Ping Wu, Changgan Zeng, Zhenyu Li, Xiaofang Zhai, Jinlong Yang, and Jianguo Hou. "Graphene thickness control via gas-phase dynamics in chemical vapor deposition." The Journal of Physical Chemistry C 116, no. 19 (2012): 10557-10562. https://doi.org/10.1021/jp210814j DOI: https://doi.org/10.1021/jp210814j

Yang, Bo, Ni Yang, Dan Zhao, Fengyang Chen, Xingping Yuan, Yanqing Hou, and Gang Xie. "Numerical Simulation of a Simplified Reaction Model for the Growth of Graphene via Chemical Vapor Deposition in Vertical Rotating Disk Reactor." Coatings 13, no. 7 (2023): 1184. https://doi.org/10.3390/coatings13071184 DOI: https://doi.org/10.3390/coatings13071184

Mizuno, Yoshichika, and Shin-ichiro Uekusa. "Analysis of reaction gases flow in CVD processes." Materials Science and Engineering: B 35, no. 1-3 (1995): 156-159. https://doi.org/10.1016/0921-5107(95)01358-X DOI: https://doi.org/10.1016/0921-5107(95)01358-X

Johari, Muhammad Hilmi, Mohamad Shukri Sirat, Mohd Ambri Mohamed, Ahmad Fikri Mustaffa, and Abdul Rahman Mohmad. "Computational Fluid Dynamics Insights into Chemical Vapor Deposition of Homogeneous MoS2 Film with Solid Precursors." Crystal Research and Technology 58, no. 10 (2023): 2300139. https://doi.org/10.1002/crat.202300139 DOI: https://doi.org/10.1002/crat.202300139

Mizuno, Yoshichika, and Shin-ichiro Uekusa. "Hydrodynamic model of thin film deposition." Microelectronic engineering 43 (1998): 519-526. https://doi.org/10.1016/S0167-9317(98)00213-5 DOI: https://doi.org/10.1016/S0167-9317(98)00213-5

Wang, Dong, Junyan Lao, Wenjia Xiao, Hengxu Qu, Jie Wang, Gang Wang, and Jian Li. "Theoretical adjustment of metalorganic chemical vapor deposition process parameters for high-quality gallium nitride epitaxial films." Physics of Fluids 35, no. 3 (2023). https://doi.org/10.1063/5.0141060 DOI: https://doi.org/10.1063/5.0141060

Mizuno, Yoshichika, Shin-ichiro Uekusa, and Hideyuki Okabe. "Hydrodynamic description of epitaxial film growth in a horizontal reactor." Journal of crystal growth 170, no. 1-4 (1997): 61-65. https://doi.org/10.1016/S0022-0248(96)00566-0 DOI: https://doi.org/10.1016/S0022-0248(96)00566-0

Tian, Jing, Zhuorui Tang, Hongyu Tang, Jiajie Fan, and Guoqi Zhng. "Optimizing Temperature and Flow Fields of 4H-SiC Epitaxial Growth by Integrating CFD Simulation with Multi-objective Particle Swarm Optimization." In 2023 24th International Conference on Electronic Packaging Technology (ICEPT), pp. 1-7. IEEE, 2023. https://doi.org/10.1109/ICEPT59018.2023.10492175 DOI: https://doi.org/10.1109/ICEPT59018.2023.10492175

Stock, L., and W. Richter. "Vertical versus horizontal reactor: An optical study of the gas phase in a MOCVD reactor." Journal of Crystal Growth 77, no. 1-3 (1986): 144-150. https://doi.org/10.1016/0022-0248(86)90294-0 DOI: https://doi.org/10.1016/0022-0248(86)90294-0

Li, Lei, Muhammad Thalhah Zainal, Mohd Fairus Mohd Yasin, Norikhwan Hamzah, Mohsin Mohd Sies, Muhammad Noor Afiq Witri Muhammad Yazid, Shokri Amzin, and Aizuddin Supee. "The influences of oxygen concentration and external heating on carbon nanotube growth in diffusion flame." CFD Letters 13, no. 12 (2021): 45-62. https://doi.org/10.37934/cfdl.13.12.4562 DOI: https://doi.org/10.37934/cfdl.13.12.4562

Published

2024-11-30

How to Cite

Khan, S. A., Syed Abu Bakar, S. N. ., Osman, M. N. ., Mohammed Sapardi, M. A. ., Ani, M. H. ., Abd Wahab, M. F. ., & Buys, Y. F. . (2024). Influence of Substrate Tilting Angle on Graphene Production through Atmospheric Pressure Chemical Vapor Deposition. Journal of Advanced Research in Numerical Heat Transfer, 27(1), 28–44. https://doi.org/10.37934/arnht.27.1.2844

Issue

Section

Articles

Most read articles by the same author(s)