A Numerical Study of a Square Cell Filled with Ice with the Presence of Different Length Slit Inside the Cell

Authors

  • Farhan Lafta Rashid Department of Petroleum Engineering, Engineering College, Kerbala University, Karbala 56001, Iraq
  • Abbas Fadhil Khalaf Department of Petroleum Engineering, Engineering College, Kerbala University, Karbala 56001, Iraq
  • Ali Basem Department of Air Conditioning Engineering, Engineering Faculty, Warith Al-Anbiyaa University, Karbala 56001, Iraq

DOI:

https://doi.org/10.37934/arnht.14.1.104117

Keywords:

Melting process, ice, crack length, numerical study, CFD

Abstract

A numerical analysis of a square cell filled with ice to determine how the existence and size of an internal incision affect the cell's behaviour. Using ANSYS/FLUENT V.16 software, the enthalpy-porosity combination was used to investigate the paper quantitatively. The material used in the study is ice. The findings of this research reveal that the time of melting for ice is lowered as the length of the break within the cell increases. The melting process takes (70) minutes to finish in a cell with a slit length of (8 cm). A cleavage length of 6 centimetres necessitates a melting time of 120 minutes. Additionally, a cell with a cleavage length of (4 cm) requires (150 min.) to finish melting.

Author Biographies

Farhan Lafta Rashid, Department of Petroleum Engineering, Engineering College, Kerbala University, Karbala 56001, Iraq

farhan.lefta@uokerbala.edu.iq

Abbas Fadhil Khalaf, Department of Petroleum Engineering, Engineering College, Kerbala University, Karbala 56001, Iraq

abbas.fadhil@uokerbala.edu.iq

Ali Basem, Department of Air Conditioning Engineering, Engineering Faculty, Warith Al-Anbiyaa University, Karbala 56001, Iraq

ali.basem@uowa.edu.iq

References

Dhaidan, N.S. and Khalaf, A.F. "Experimental evaluation of the melting behaviours of paraffin within a hemicylindrical storage cell." Int. Communication In Heat and Mass Transfer 111 (2020): 104476. https://doi.org/10.1016/j.icheatmasstransfer.2020.104476.

Bull, S.R. "Renewable energy today and tomorrow." Proceedings of the IEEE 89, no. 8 (2001): 1216-1226.‏ https://doi.org/10.1109/5.940290.

Sharma, A., Tyagi, V.V., Chen, C.R., and Buddhi, D. "Review on thermal energy storage with phase change materials and applications." Renewable and Sustainable energy reviews 13, no. 2 (2009): 318-345.‏ https://doi.org/10.1016/j.rser.2007.10.005.

Rashid, F.L., Eisapour, M., Ibrahem, R.K., Talebizadehsardari, P., Hosseinzadeh, K., Abbas, M.H., Mohammed, H.I., Yvaz, A., and Chen, Z. "Solidification enhancement of phase change materials using fins and nanoparticles in a triplex-tube thermal energy storage unit: Recent advances and development." International Communications in Heat and Mass Transfer 147 (2023): 106922. https://doi.org/10.1016/j.icheatmasstransfer.2023.106922.

Younsi, Z., Joulin, A., Zalewski, L., Lassue, S., and Rousse, D.R. "Phase change materials: a numerical method for the behavior predictions." Proceedings of the Fourth International Conference on Thermal Engineering: Theory and Applications (2009): 12-14.‏

Shokouhmand, H., and Kamkari, B. "Experimental investigation on melting heat transfer characteristics of lauric acid in a rectangular thermal storage unit." Experimental Thermal and Fluid Science 50 (2013): 201-212.‏ http://dx.doi.org/10.1016/j.expthermflusci.2013.06.010.

Sun, X., Chu, Y., Mo, Y., Fan, S., and Liao, S. "Experimental investigations on the heat transfer of melting phase change material (PCM)." Energy Procedia 152 (2018): 186-191.‏ https://doi.org/10.1016/j.egypro.2018.09.079.

Yadav, A., and Samir, S. "Experimental and numerical investigation of spatiotemporal characteristics of thermal energy storage system in a rectangular enclosure." Journal of Energy Storage 21 (2019): 405-417.‏ https://doi.org/10.1016/j.est.2018.12.005.

Alshara, A.K., and Kadhim, M.K. "Numerical Investigation of Energy Storage in Packed Bed of Cylindrical Capsules of PCM." Engineering and Technology Journal 32, no. 2 (2014): 494-510.‏ https://doi.org/10.30684/etj.32.2A.15.

Hlimi, M., Hamdaoui, S., Mahdaoui, M., Kousksou, T., Msaad, A.A., Jamil, A., and El Bouardi, A. "Melting inside a horizontal cylindrical capsule." Case Studies in Thermal Engineering 8 (2016): 359-369.‏ https://doi.org/10.1016/j.csite.2016.10.001.

Bechiri, M., and Mansouri, K. "Study of heat and fluid flow during melting of PCM inside vertical cylindrical tube." International Journal of Thermal Sciences 135 (2019): 235-246.‏ https://doi.org/10.1016/j.ijthermalsci.2018.09.017.

Rashid, F.L, Al-Obaidi, M.A., Dulaimi, A., Mahmood, D.M., and Sopian, K. 2023. "A Review of Recent Improvements, Developments, and Effects of Using Phase-Change Materials in Buildings to Store Thermal Energy." Designs 7 (2023): 90. https://doi.org/10.3390/designs7040090.

Dhaidan, N.S., Khalaf, A.F., and Khodadadi, J.M. "Numerical and Experimental Investigation of Melting of Paraffin in a Hemicylindrical Capsule." J. Therm. Sci. Eng. Appl. 13, no. 5 (2021): 1–8. https://doi.org/10.1115/1.4049873.

Rizan, M.Z.M., Tan, F.L., and Tso, C.P. "An experimental study of n-octadecane melting inside a sphere subjected to constant heat rate at surface." International communications in heat and mass transfer 39, no.10 (2012): 1624-1630.‏ https://doi.org/10.1016/j.icheatmasstransfer.2012.08.003.

Ismail, K.A.R., Moura, L.F., Lago, T., Lino, F.A.M., and Nobrega, C. "Experimental study of fusion and solidification of phase change material (pcm) in spherical geometry." ‏ 12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (2016): 1243-1248.

Rashid, F.L., Rahbari, A., Ibrahem, R.K., Talebizadehsardari, P., Basem, A., Kaood, A., Mohammed, H.I., Abbas, M.H., and Al-Obaidi, M.A. "Review of solidification and melting performance of phase change materials in the presence of magnetic field, rotation, tilt angle, and vibration." Journal of Energy Storage 67 (2023): 107501. https://doi.org/10.1016/j.est.2023.107501.

Rashid, F.L., Basem, A., Ameer Khalaf, F.A., Abbas, M.H., and Hashim, A. "Recent Breakthroughs and Improvements in Phase Change Material Melting in a Triple Tube Thermal Storage Unit." Revue des Composites et des Matériaux Avancés-Journal of Composite and Advanced Materials 32, no. 6 (2022): 295-304. https://doi.org/10.18280/rcma.320605.

Tiji, M.E., Al-Azzawi, W.K., Mohammed, H.I., Dulaimi, A., Rashid, F.L., Mahdi, J.M., Majdi, H.S., Talebizadehsardari, P., and Ali, H.M. "Thermal Management of the Melting Process in a Latent Heat Triplex Tube Storage System Using Different Configurations of Frustum Tubes." Journal of Nanomaterials 7398110 (2022): 14. https://doi.org/10.1155/2022/7398110.

Sattari, H., Mohebbi, A., Afsahi, M.M., and Yancheshme, A.A. "CFD simulation of melting process of phase change materials (PCMs) in a spherical capsule." International Journal of Refrigeration 73 (2017): 209-218.‏ https://doi.org/10.1016/j.ijrefrig.2016.09.007.

Agarwal, A., and Sarviya, R.M. "An experimental investigation of shell and tube latent heat storage for solar dryer using paraffin wax as heat storage material." Engineering Science and Technology, an International Journal 19, no. 1 (2016): 619-631.‏ https://doi.org/10.1016/j.jestch.2015.09.014.

Dhaidan, N.S., Kokz, S.A., Rashid, F.L., Hussein, A.K., Younis, O., and Al-Mousawi, F.N. "Review of solidification of phase change materials dispersed with nanoparticles in different containers." Journal of Energy Storage 51 (2022): 104271. https://doi.org/10.1016/j.est.2022.104271.

Saffari, M., Roe, C., and Finn, D.P. "Improving the building energy flexibility using PCM-enhanced envelopes." Applied Thermal Engineering 217 (2022): 119092. https://doi.org/10.1016/j.applthermaleng.2022.119092.

Esapour, M., Hosseini, M.J., Ranjbar, A.A., Pahamli, Y., and Bahrampoury, R. "Phase change in multi-tube heat exchangers." Renewable Energy 85 (2016): 1017-1025.‏ https://doi.org/10.1016/j.renene.2015.07.063.

Ebrahimi, A., Hosseini, M.J., Ranjbar, A.A., Rahimi, M., and Bahrampoury, R. "Melting process investigation of phase change materials in a shell and tube heat exchanger enhanced with heat pipe." Renewable Energy 138 (2019): 378-394. https://doi.org/10.1016/j.renene.2019.01.110.

Jesumathy, S., Udayakumar, M., and Suresh, S. "Experimental study of enhanced heat transfer by addition of CuO nanoparticle." Heat and Mass Transfer 48, no. 6 (2012): 965-978.‏ https://doi.org/10.1007/s00231-011-0945-y.

Harikrishnan, S., and Kalaiselvam, S. "Preparation and thermal characteristics of CuO–oleic acid nanofluids as a phase change material." Thermochimica Acta 533 (2012): 46-55. https://doi.org/10.1016/j.tca.2012.01.018.

Yang, S., Shao, X.-F., Luo, J.-H., Oskouei, S.B., Bayer, Ö., and Fan, L.-W. "A novel cascade latent heat thermal energy storage system consisting of erythritol and paraffin wax for deep recovery of medium-temperature industrial waste heat." Energy 265 (2023): 126359. https://doi.org/10.1016/j.energy.2022.126359.

Ahmed, N., Elfeky, K.E., Lu, L., and Wang, Q.W. "Thermal performance analysis of thermocline combined sensible-latent heat storage system using cascaded-layered PCM designs for medium temperature applications." Renewable Energy 152 (2020): 684-697. https://doi.org/10.1016/j.renene.2020.01.073.

Rashid, F.L., Al-Obaidi, M.A., Dulaimi, A., Bernardo, L.F.A., Eleiwi, M.A., Mahood, H.B., and Hashim, A. "A Review of Recent Improvements, Developments, Effects, and Challenges on Using Phase-Change Materials in Concrete for Thermal Energy Storage and Release." J. Compos. Sci. 7 (2023): 352. https://doi.org/10.3390/jcs7090352.

Rashid, F.L., Al-Obaidi, M.A., Dulaimi, A., Bernardo, L.F.A., Abdul Redha, Z.A., Hoshi, H.A., Mahood, H.B., and Hashim, A. "Recent Advances on The Applications of Phase Change Materials in Cold Thermal Energy Storage: A Critical Review." J. Compos. Sci. 7 (2023): 338. https://doi.org/10.3390/jcs7080338.

Rashid, F.L., Al-Obaidi, M.A., Dulaimi, A., Bahlol, H.Y., and Hasan, A. "Recent Advances, Development, and Impact of Using Phase Change Materials as Thermal Energy Storage in Different Solar Energy Systems: A Review." Designs 7 (2023): 66. https://doi.org/10.3390/designs7030066.

Khalaf, A.F., Rashid, F.L., Basem, A., and Abbas, M.H. "Numerical Study of the Effect of Air Bubble Location on the PCM Melting Process in a Rectangular Cavity." Mathematical Modelling of Engineering Problems 10, no. 1 (2023): 71-83. https://doi.org/10.18280/mmep.100109.

Rashid, F.L., Hussein, A.K., Malekshah, E.H., Abderrahmane, A., Guedri, K., and Younis, O. "Review of Heat Transfer Analysis in Different Cavity Geometries with and without Nanofluids." Nanomaterials 12 (2022): 2481. https://doi.org/10.3390/nano12142481.

Dhaidan, N.S., Kokz, S.A., Rashid, F.L., Hussein, A.K., Younis, O., and Al-Mousawi, F.N. "Review of solidification of phase change materials dispersed with nanoparticles in different containers." Journal of Energy Storage 51 (2022): 104271. https://doi.org/10.1016/j.est.2022.104271

Rashid, F.L., Hashim, A. "Development of Phase Change Materials/Nanoparticles for Thermal Energy Storage." International Journal of Scientific Research and Engineering Development 3 (2020): 790-799.

Rashid, F.L., Hashim, A. "Recent Review on Nanofluid/ Nanocomposites for Solar Energy Storage." International Journal of Scientific Research and Engineering Development 3 (2020): 780-789.

Shareef, A.S., Rashid, F.L., Hadi, A., and Hashim, A. "Water-Polyethylene Glycol/(Sic-Wc) And (Ceo2Wc) Nanofluids For Saving Solar Energy." International Journal of Scientific & Technology Research 8 (2019): 1041-1043.

Rashid, F.L., Talib, S.M., Hadi, A., and Hashim, A. "Novel of thermal energy storage and release: water/(SnO2 -TaC) and water/(SnO2 –SiC) nanofluids for environmental applications." IOP Conference Series: Materials Science and Engineering 454 (2018): 1-4.

Rashid, F.L., Hadi, A., Al-Garah, N.H., Hashim, A. "Novel phase change materials, MgO nanoparticles, and water based nanofluids for thermal energy storage and biomedical applications." Int. J. Pharm. Phytopharmacol. Res 8 (2018): 46-56.

Obaid, Z.H., Rashid, F.L., Habeeb, M.A., Hashim, A., and Hadi, A. "Synthesis of New Biomaterial Composite for Thermal Energy Storage and Release." Journal of Chemical and Pharmaceutical Sciences 10, no. 1 (2017): 1-4.

Sulaiman, N., Ihsan, S.I., Abu Bakar, S.N.S., Majid, Z.A.A., and Zakaria, Z.A. "Evacuated tubes solar air collectors: A review on design configurations, simulation works and applications." Progress in Energy and Environment 25 (2023). https://doi.org/10.37934/progee.25.1.1032

Gudekote, M., and Choudhari, R. "Slip Effects on Peristaltic Transport of Casson Fluid in an Inclined Elastic Tube with Porous Walls." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 43, no. 1 (2018): 67-80.

Tripathi, M.K., and Saifi, A.H. "Marangoni Convection in Liquid Bridges due to a Heater/Cooler Ring." Journal of Advanced Research in Numerical Heat Transfer 12, no. 1(2023): 18-25.

Downloads

Published

2024-01-07

How to Cite

Farhan Lafta Rashid, Abbas Fadhil Khalaf, & Ali Basem. (2024). A Numerical Study of a Square Cell Filled with Ice with the Presence of Different Length Slit Inside the Cell. Journal of Advanced Research in Numerical Heat Transfer, 14(1), 104–117. https://doi.org/10.37934/arnht.14.1.104117

Issue

Section

Articles

Most read articles by the same author(s)