Analyzing the Impact of Droplet Impingement Interval on Biodiesel Deposition Characteristics
DOI:
https://doi.org/10.37934/arfmts.119.1.4253Keywords:
Biodiesel, deposits, impingement intervalAbstract
The purpose of this work is to investigate the effect of droplet impingement interval on deposition characteristics of diesel fuel (DF) and palm oil biodiesel with different blending ratios (B10-B50) by applying the hot surface deposition test (HSDT). Generally, HSDT method is a simplified method to simulate fuel deposition in diesel engines by impinging fuel droplets on a heated aluminum alloy plate surface. The mass of accumulated deposits after droplets ND=16000 for impingement interval of timp=7 seconds (dry condition) MR=3.7mg (DF), MR=3.9mg (B10), MR=17.1mg (B20), MR=24.0mg (B30), MR=25.1mg (B40), and MR=28.8mg (B50). For impingement interval of timp=3 seconds (wet condition), the deposit mass was MR=4.4mg (DF), MR=8.9mg (B10), MR=20.4mg (B20), MR=31.1mg (B30), MR=62.4mg (B40), and MR=58.2mg (B50). In terms of deposit surface temperature, the recorded average minimum and maximum deposit surface temperatures were between Td=295°C to Td=325°C (timp=7 seconds) and Td=200°C to Td=300°C (timp=3 seconds) for DF. For B10-B50, the deposit surface temperatures were around Td=290°C to Td=350°C (timp=7 seconds) and below Td=200°C for impingement interval of timp=3 seconds.