Material Treatment of Polypropylene (PP) / Recycle Acrylonitrile Butadiene Rubber (NBrr) and Banana Skin Powder (BSP) using Thermal Mixing Techniques
Keywords:
banana skin fiber, alkaline treatment, silane treatment, polypropylene , compositesAbstract
One of the most significant current discussions in material properties is the chemical treatment effect on the proposed materials. In this paper, the effects of NaOH and α-APS silane treatments on the characteristics, thermal and mechanical properties of polypropylene (PP)/recycled acrylonitrile butadiene (NBRr)/ banana skin powder (BSP) experimented. The thermal mixing process by heated two roll mills was used to melt mix the composites at a temperature of 180 ̊C to produce six different fiber loading (70/30/5, 70/30/10, 70/30/15, 70/30/20, 70/30/25 and 70/30/30w/w). The effects of NaOH and α-APS silane treatment on PP/NBRr/BSP composites were analyzed using Tensile Test, Scanning Electron Microscopy (SEM), Water Uptake and Fourier Transform Infrared Spectroscopy (FTIR). The results showed that α-APS silane treated PP/NBRr/BSP composites has better improvement on mechanical properties when compared to the NaOH treated PP/NBRr/BSP composites, followed by the weakest mechanical properties of untreated PP/NBRr/BSP composites. These were due to good compatibility and stronger interaction between Si-O-Si moieties with the surface of fiber for α-APS silane treated BSP. The mechanical properties of PP/NBRr/BSP composites improve with decreasing BSP filler loading. This was due to better interfacial adhesion between both α-APS silane and NaOH treated BSP filler with PP/NBRr matrices while decreasing BSP filler loading. Furthermore, the chemical interactions in the composite before and after treatments were also investigated.