Enhancing Closed System Efficiency through CuO Nanofluids: Investigating Thermophysical Properties and Heat Transfer Performance
DOI:
https://doi.org/10.37934/arfmts.117.1.179188Keywords:
Nanofluid, colloidal suspensions, stability, viscosity, copper oxide, thermal conductivityAbstract
Working fluids play a crucial role in closed systems to ensure efficient performance, particularly in systems for heating, cooling, or power generation, where the heat transfer coefficient is pivotal. This study delves into the thermodynamic properties and stability of copper oxide (CuO) nanofluids as alternative working fluids in closed systems. Investigating colloidal suspensions of CuO nanoparticles, the research aims to enhance heat transfer efficiency. CuO nanoparticles, sized at 40nm and 80nm, were dispersed in base fluids like water, ethylene glycol, and oil sans surfactants. The study, divided into static and dynamic phases, examines key nanofluid properties including viscosity, thermal conductivity, specific heat, and heat transfer rate. Through methodologies such as KD2 Pro for thermal conductivity, rheometer for viscosity, and small heat exchanger for heat transfer rate analysis, the effects of volume concentration, temperature, and nanoparticle size on nanofluid performance were evaluated. Sedimentation analysis employed both quantitative (standard deviation calculations) and qualitative (sediment capture methods) approaches. The findings highlight the superior heat transfer rate of 40nm CuO nanofluid at 0.467% volume concentration which is 9.08 kJ/s, suggesting its potential to optimize system efficiency, particularly in heating, cooling, and power generation applications.