Large-Eddy Simulation of a Flow Generated by a Piston-driven Synthetic Jet Actuator

Authors

  • Pham Duy Tung Department of Aerospace Engineering, Nagoya University, Nagoya 464-8603, Japan
  • Tomoaki Watanabe Education and Research Center for Flight Engineering, Nagoya University, Nagoya 464-8603, Japan
  • Koji Nagata Department of Mechanical Engineering and Science, Kyoto University, Kyoto 615-8530, Japan https://orcid.org/0000-0002-3661-5811

DOI:

https://doi.org/10.37934/cfdl.15.8.118

Keywords:

Piston-driven synthetic jet, Open FOAM, LES

Abstract

We study the characteristics of a compressible flow generated by a piston-driven synthetic jet actuator by employing large-eddy simulation with OpenFOAM. The actuator consists of a piston and a cylinder with a square orifice on top and produces a compressible synthetic jet with the piston movement. Comparison with experimental data demonstrates that the numerical model constructed with OpenFOAM is useful to examine the performance of the actuator. As the piston frequency increases, the maximum pressure inside the cylinder increases while the minimum pressure decreases. The fluid temperature inside the cylinder also varies similarly to the pressure. The maximum jet Mach number is well represented as a function of the maximum pressure. The phase-averaged velocity field of the synthetic jet confirms that the blowing and suction phases do not perfectly match with the piston movement. The root-mean-square velocity defined with the phase average also shows that a high turbulence level is observed in the region where the flow is decelerated at the furthest location of the jet in the blowing phase

Downloads

Download data is not yet available.

Author Biographies

Pham Duy Tung, Department of Aerospace Engineering, Nagoya University, Nagoya 464-8603, Japan

tung.nagoyadaigaku@gmail.com

Tomoaki Watanabe, Education and Research Center for Flight Engineering, Nagoya University, Nagoya 464-8603, Japan

watanabe.tomoaki@c.nagoya-u.jp

Koji Nagata, Department of Mechanical Engineering and Science, Kyoto University, Kyoto 615-8530, Japan

nagata.kouji.e9@f.mail.nagoya-u.ac.jp

References

Lin, John C. "Review of research on low-profile vortex generators to control boundary-layer separation." Progress in Aerospace Sciences 38, no. 4-5 (2002): 389-420. https://doi.org/10.1016/S0376-0421(02)00010-6

Gao, Linyue, Hui Zhang, Yongqian Liu, and Shuang Han. "Effects of vortex generators on a blunt trailing-edge airfoil for wind turbines." Renewable Energy 76 (2015): 303-311. https://doi.org/10.1016/j.renene.2014.11.043

Bragg, M. B., and G. M. Gregorek. "Experimental study of airfoil performance with vortex generators." Journal of aircraft 24, no. 5 (1987): 305-309. https://doi.org/10.2514/3.45445

Cattafesta III, Louis N., and Mark Sheplak. "Actuators for active flow control." Annual Review of Fluid Mechanics 43 (2011): 247-272. https://doi.org/10.1146/annurev-fluid-122109-160634

Lee, Chester, Guang Hong, Q. P. Ha, and S. G. Mallinson. "A piezoelectrically actuated micro synthetic jet for active flow control." Sensors and Actuators A: Physical 108, no. 1-3 (2003): 168-174. https://doi.org/10.1016/S0924-4247(03)00267-X

Smith, Barton L., and Ari Glezer. "The formation and evolution of synthetic jets." Physics of fluids 10, no. 9 (1998): 2281-2297. https://doi.org/10.1063/1.869828

Glezer, Ari, and Michael Amitay. "Synthetic jets." Annual review of fluid mechanics 34, no. 1 (2002): 503-529. https://doi.org/10.1146/annurev.fluid.34.090501.094913

Ariffin, Ahmad Hamdan, and Kamarul Ariffin Ahmad. "Computational Fluid Dynamic (CFD) Simulation of Synthetic Jet Cooling: A Review." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 72, no. 2 (2020): 103-112. https://doi.org/10.37934/arfmts.72.2.103112

Husin, Azmi, Mohd Zulkifly Abdullah, Azmi Ismail, Ayub Ahmed Janvekar, Mohd Syakirin Rusdi, and Wan Mohd Amri Wan Mamat Ali. "Heat Transfer Performance of a Synthetic Jet Generated by Diffuser-Shaped Orifice." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 53, no. 1 (2019): 122-128.

Amitay, Michael, Andrew Honohan, Mark Trautman, Ari Glezer, Michael Amitay, Andrew Honohan, Mark Trautman, and Ari Glezer. "Modification of the aerodynamic characteristics of bluff bodies using fluidic actuators." In 28th Fluid Dynamics Conference, p. 2004. 1997. https://doi.org/10.2514/6.1997-2004

Crook, Andrew, Amit Sadri, and Norman Wood. "The development and implementation of synthetic jets for the control of separated flow." In 17th Applied Aerodynamics Conference, p. 3176. 1999. https://doi.org/10.2514/6.1999-3176

Chen, Y., S. Liang, K. Aung, A. Glezer, and J. Jagoda. "Enhanced mixing in a simulated combustor using synthetic jet actuators." In 37th aerospace sciences meeting and exhibit, p. 449. 1999. https://doi.org/10.2514/6.1999-449

Lyubimov, D. A., and I. V. Potekhina. "Application of the RANS/ILES method in analyzing the efficiency of the control of separation flows in diffusers using synthetic jets." Fluid Dynamics 50 (2015): 590-599. https://doi.org/10.1134/S0015462815040146

Sato, Makoto, Koichi Okada, Kengo Asada, Hikaru Aono, Taku Nonomura, and Kozo Fujii. "Unified mechanisms for separation control around airfoil using plasma actuator with burst actuation over Reynolds number range of 103–106." Physics of Fluids 32, no. 2 (2020): 025102. https://doi.org/10.1063/1.5136072

Keisar, David, David Hasin, and David Greenblatt. "Plasma actuator application on a full-scale aircraft tail." AIAA Journal 57, no. 2 (2019): 616-627. https://doi.org/10.2514/1.J057233

Zainuddin, Farah Ayiesya, and Nazri Md Daud. "A review on dielectric barrier discharge (dbd) plasma actuator in aeronautics applications." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 48, no. 2 (2018): 125-132.

Santhanakrishnan, Arvind, and Jamey D. Jacob. "Flow control with plasma synthetic jet actuators." Journal of Physics D: Applied Physics 40, no. 3 (2007): 637. https://doi.org/10.1088/0022-3727/40/3/S02

Thomas, Flint O., Thomas C. Corke, Muhammad Iqbal, Alexey Kozlov, and David Schatzman. "Optimization of dielectric barrier discharge plasma actuators for active aerodynamic flow control." AIAA journal 47, no. 9 (2009): 2169-2178. https://doi.org/10.2514/1.41588

Jolibois, J., and E. Moreau. "Enhancement of the electromechanical performances of a single dielectric barrier discharge actuator." IEEE Transactions on Dielectrics and Electrical Insulation 16, no. 3 (2009): 758-767. https://doi.org/10.1109/TDEI.2009.5128516

Dahalan, Md Nizam, Hafizah Zahari, Ainullotfi Abdul-Latif, Shabudin Mat, Shuhaimi Mansor, Norazila Othman, Mastura Abd Wahid et al. "Feasibility Study of Plasma Actuator for Flow Separation Control." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 65, no. 2 (2020): 201-212.

Vernet, Julie A., Ramis Örlü, and P. Henrik Alfredsson. "Flow separation control by dielectric barrier discharge plasma actuation via pulsed momentum injection." AIP Advances 8, no. 7 (2018): 075229. https://doi.org/10.1063/1.5037770

Moreau, E., Jonathan Cazour, and N. Benard. "Influence of the air-exposed active electrode shape on the electrical, optical and mechanical characteristics of a surface dielectric barrier discharge plasma actuator." Journal of Electrostatics 93 (2018): 146-153. https://doi.org/10.1016/j.elstat.2018.04.005

Ebrahimi, Abbas, Majid Hajipour, and Kamran Ghamkhar. "Experimental study of stall control over an airfoil with dual excitation of separated shear layers." Aerospace Science and Technology 82 (2018): 402-411. https://doi.org/10.1016/j.ast.2018.09.027

Crittenden, Thomas M., and Ari Glezer. "A high-speed, compressible synthetic jet." Physics of Fluids 18, no. 1 (2006): 017107. https://doi.org/10.1063/1.2166451

Traub, Lance W., Michael Sweet, and Karl Nilssen. "Evaluation and characterization of a lateral synthetic jet actuator." Journal of aircraft 49, no. 4 (2012): 1039-1050. https://doi.org/10.2514/1.C031545

Eri, Qitai, Liang Hong, and Ting Li. "Novel Piston-Type Synthetic Jet Actuator with Auxiliary Air Inlet." Journal of Aerospace Engineering 32, no. 1 (2019): 04018127. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000936

Gilarranz, J. L., L. W. Traub, and O. K. Rediniotis. "Characterization of a compact, high-power synthetic jet actuator for flow separation control." In AIAA Aerospace Sciences Meeting & Exhibit, 40 th, Reno, NV. 2002. https://doi.org/10.2514/6.2001-737

Gilarranz, J. L., L. W. Traub, and O. K. Rediniotis. "A new class of synthetic jet actuators—Part I: Design, fabrication and bench top characterization." J. Fluids Eng. 127, no. 2 (2005): 367-376. https://doi.org/10.1115/1.1839931

Gilarranz, J. L., L. W. Traub, and O. K. Rediniotis. "A new class of synthetic jet actuators—part II: application to flow separation control." J. Fluids Eng. 127, no. 2 (2005): 377-387. https://doi.org/10.1115/1.1882393

Hwang, W., and J. K. Eaton. "Creating homogeneous and isotropic turbulence without a mean flow." Experiments in Fluids 36 (2004): 444-454. https://doi.org/10.1007/s00348-003-0742-6

Variano, Evan A., Eberhard Bodenschatz, and Edwin A. Cowen. "A random synthetic jet array driven turbulence tank." Experiments in fluids 37 (2004): 613-615. https://doi.org/10.1007/s00348-004-0833-z

Yamamoto, Kohei, Tomoaki Watanabe, and Koji Nagata. "Turbulence generated by an array of opposed piston-driven synthetic jet actuators." Experiments in Fluids 63, no. 1 (2022): 35. https://doi.org/10.1007/s00348-021-03351-z

Yamamoto, K., T. Ishida, T. Watanabe, and K. Nagata. "Experimental and numerical investigation of compressibility effects on velocity derivative flatness in turbulence." Physics of Fluids 34, no. 5 (2022): 055101. https://doi.org/10.1063/5.0085423

Qayoum, A., and A. Malik. "Influence of the excitation frequency and orifice geometry on the fluid flow and heat transfer characteristics of synthetic jet actuators." Fluid Dynamics 54 (2019): 575-589. https://doi.org/10.1134/S0015462819040086

OpenFOAM, Ver.7 For Ubuntu 16.04LTS, 8th Jul. (2019). https://doi.org/10.18623/rvd.v16i35.1664

Sakakibara, Hiroyuki, Tomoaki Watanabe, and Koji Nagata. "Supersonic piston synthetic jets with single/multiple orifice." Experiments in Fluids 59 (2018): 1-12. https://doi.org/10.1007/s00348-018-2529-9

Issa, Raad I. "Solution of the implicitly discretised fluid flow equations by operator-splitting." Journal of computational physics 62, no. 1 (1986): 40-65. https://doi.org/10.1016/0021-9991(86)90099-9

Caretto, L. S., A. D. Gosman, S. V. Patankar, and D. B. Spalding. "Two calculation procedures for steady, three-dimensional flows with recirculation." In Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics: Vol. II Problems of Fluid Mechanics, pp. 60-68. Springer Berlin Heidelberg, 1973. https://doi.org/10.1007/BFb0112677

Holzmann, Tobias. "Mathematics, numerics, derivations and OpenFOAM®." Loeben, Germany: Holzmann CFD (2016).

Anderson, John David. Modern compressible flow: with historical perspective. Vol. 12. New York: McGraw-Hill, 1990.

Yaacob, Mohd Rusdy, Rasmus Korslund Schlander, Preben Buchhave, and Clara Marika Velte. "A novel laser Doppler anemometer (LDA) for high-accuracy turbulence measurements." arXiv preprint arXiv:1905.08066 (2019).

Yaacob, Mohd Rusdy, Rasmus Korslund Schlander, Preben Buchhave, and Clara M. Velte. "Experimental evaluation of kolmogorov’s-5/3 and 2/3 power laws in the developing turbulent round jet." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 45, no. 1 (2018): 14-21.

Downloads

Published

2023-06-23

How to Cite

Tung, P. D. ., Watanabe, T., & Nagata, K. (2023). Large-Eddy Simulation of a Flow Generated by a Piston-driven Synthetic Jet Actuator. CFD Letters, 15(8), 1–18. https://doi.org/10.37934/cfdl.15.8.118

Issue

Section

Articles

Most read articles by the same author(s)