Modification of Gas Inlet Design in Pyrolysis Reactors by using Computational Fluid Dynamics for the Optimization of Bio-Oil Production from Biomass Waste Mixture

Authors

  • Bayu Triwibowo Department of Chemical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Gd. E1 lt. 2 UNNES Sekaran Campus, Gunungpati, Semarang 50229, Indonesia
  • Haniif Prasetiawan Department of Chemical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Gd. E1 lt. 2 UNNES Sekaran Campus, Gunungpati, Semarang 50229, Indonesia
  • Dewi Selvia Fardhyanti Department of Chemical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Gd. E1 lt. 2 UNNES Sekaran Campus, Gunungpati, Semarang 50229, Indonesia
  • Hanif Ardhiansyah Department of Chemical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Gd. E1 lt. 2 UNNES Sekaran Campus, Gunungpati, Semarang 50229, Indonesia

DOI:

https://doi.org/10.37934/cfdl.17.8.171181

Keywords:

Bio oil, inlet gas modification, nitrogen, pyrolysis

Abstract

The bio-oil production process from biomass waste can be carried out by using a pyrolysis reactor. Pyrolysis is a thermochemical decomposition process of organic materials through a heating process without oxygen, where the raw material will undergo a chemical structure breakdown into a gas phase. The nitrogen gas is needed to suppress or remove the oxygen during the pyrolysis process. Nitrogen flow in a good biomass pyrolysis reactor needs to pay attention to the speed of nitrogen without ignoring the volume of gas storage. For this reason, one thing that can be studied further is the geometry of the inlet of the biomass pyrolysis device. Inlet geometry can be varied based on several parameters, including variations in inlet shape that can affect flow pressure. Therefore, in this research, calculations will be carried out using computational fluid dynamics to obtain optimal outlet velocity and pressure drop results. The simulation will be carried out using inlet discharge data, namely 1 L/min, 2 L/min and 3 L/min which is converted into inlet velocity data. The results show that the modified inlet gas produces a flow rate with a lower pressure and also spreads the nitrogen gas more evenly inside the reactor compared to the unmodified inlet gas.

Downloads

Author Biographies

Bayu Triwibowo, Department of Chemical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Gd. E1 lt. 2 UNNES Sekaran Campus, Gunungpati, Semarang 50229, Indonesia

bayu.triwibowo@mail.unnes.ac.id

Haniif Prasetiawan, Department of Chemical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Gd. E1 lt. 2 UNNES Sekaran Campus, Gunungpati, Semarang 50229, Indonesia

haniif.prasetiawan@mail.unnes.ac.id

Dewi Selvia Fardhyanti, Department of Chemical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Gd. E1 lt. 2 UNNES Sekaran Campus, Gunungpati, Semarang 50229, Indonesia

dewiselvia@mail.unnes.ac.id

Hanif Ardhiansyah, Department of Chemical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Gd. E1 lt. 2 UNNES Sekaran Campus, Gunungpati, Semarang 50229, Indonesia

hanif.ardhi@mail.unnes.ac.id

References

[1] Cahyono, M. Sigit. "Pengaruh jenis bahan pada proses pirolisis sampah organik menjadi bio-oil sebagai sumber energi terbarukan." Jurnal Sains & Teknologi Lingkungan 5, no. 2 (2013): 67-76. https://doi.org/10.20885/jstl.vol5.iss2.art1

[2] Wijayanti, Widya, Mega Nur Sasongko and Rizky Kusumastuti. "Modelling analysis of pyrolysis process with thermal effects by using Comsol Multiphysics." Case Studies in Thermal Engineering 28 (2021): 101625. https://doi.org/10.1016/j.csite.2021.101625

[3] Ohliger andreas, Malte Förster and Reinhold Kneer. "Torrefaction of beechwood: A parametric study including heat of reaction and grindability." Fuel 104 (2013): 607-613. https://doi.org/10.1016/j.fuel.2012.06.112

[4] Fardhyanti, Dewi Selvia, Achmad Chafidz, Bayu Triwibowo, Haniif Prasetiawan, Novia Noor Cahyani and Sinta Andriyani. "Improving the quality of bio-oil produced from rice husk pyrolysis by extraction of its phenolic compounds." Jurnal Bahan Alam Terbarukan 8, no. 2 (2020): 90-100. https://doi.org/10.15294/jbat.v8i2.22530

[5] Fardhyanti, Dewi Selvia and Haniif Prasetiawan. “Peningkatan Yield Fenol Dari Bio-Oil Hasil Pirolisis Bagasse Tebu Melalui Proses Ekstraksi Pada Suhu Dan Kecepatan Pengadukan.” Prosiding Seminar Nasional Teknik Kimia UNNES 2018, (2018): 9–17.

[6] Fardhyanti, Dewi Selvia, Megawati, Achmad Chafidz, Haniif Prasetiawan, Prayogo Tri Raharjo, Ummi Habibah and Ahmed E. Abasaeed. "Production of bio-oil from sugarcane bagasse by fast pyrolysis and removal of phenolic compounds." Biomass Conversion and Biorefinery 14, no. 1 (2024): 217-227. https://doi.org/10.1007/s13399-022-02527-9

[7] Prasetiawan, Haniif, Dewi Selvia Fardhyanti, Widya Fatrisari and Hadiyanto Hadiyanto. "Preliminary Study on The Bio-Oil Production from Multi Feed-Stock Biomass Waste via Fast Pyrolysis Process." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 103, no. 2 (2023): 216-227. https://doi.org/10.37934/arfmts.103.2.216227

[8] Fardhyanti, Dewi Selvia, Siti Hardiyanti Pradana, Lia Setyani, Cepi Kurniawan, Retno Ambarwati, Sigit Lestari. “Pemungutan Senyawa Fenol Dari Bio-Oil Hasil Pirolisis Tempurung Kelapa Dengan Metode Ekstraksi Cair-Cair,” Prosiding Seminar Nasional Teknik Kimia UNNES 2018, (2018): 1-8.

[9] Mohamed, Alina Rahayu, Zainab Hamzah, Mohamed Zulkali Mohamed Daud and Zarina Zakaria. "The effects of holding time and the sweeping nitrogen gas flowrates on the pyrolysis of EFB using a fixed–bed reactor." Procedia Engineering 53 (2013): 185-191. https://doi.org/10.1016/j.proeng.2013.02.024

[10] Zhou, Yuchen, Zezhi Chen, Huijuan Gong, Lu Chen, Huiqiang Yu and Weili Wu. "Characteristics of dehydration during rice husk pyrolysis and catalytic mechanism of dehydration reaction with NiO/γ-Al2O3 as catalyst." Fuel 245 (2019): 131-138. https://doi.org/10.1016/j.fuel.2019.02.059

[11] Aysu, Tevfik. "Catalytic pyrolysis of Eremurus spectabilis for bio-oil production in a fixed-bed reactor: effects of pyrolysis parameters on product yields and character." Fuel Processing Technology 129 (2015): 24-38. https://doi.org/10.1016/j.fuproc.2014.08.014

[12] Ma, Xiaolong, Dmitry Ridner, Zisheng Zhang, Xingang Li, Hong Li, Hong Sui and Xin Gao. "Study on vacuum pyrolysis of oil sands by comparison with retorting and nitrogen sweeping pyrolysis." Fuel Processing Technology 163 (2017): 51-59. https://doi.org/10.1016/j.fuproc.2017.04.011

[13] Mishra, Ranjeet Kumar, Abhishek Muraraka and Kaustubha Mohanty. "Optimization of process parameters and catalytic pyrolysis of Cascabela thevetia seeds over low-cost catalysts towards renewable fuel production." Journal of the Energy Institute 93, no. 5 (2020): 2033-2043. https://doi.org/10.1016/j.joei.2020.04.019

[14] Das, Sutapa and Vaibhav V. Goud. "RSM-optimised slow pyrolysis of rice husk for bio-oil production and its upgradation." Energy 225 (2021): 120161. https://doi.org/10.1016/j.energy.2021.120161

[15] Poddar, Sourav and J. Sarat Chandra Babu. "Modelling and optimization of a pyrolysis plant using swine and goat manure as feedstock." Renewable Energy 175 (2021): 253-269. https://doi.org/10.1016/j.renene.2021.04.120

[16] Wijayanti, Hesti, Desy Ratnasari and Rahman Hakim. "Studi Kinetika Pirolisis Sekam Padi untuk Menghasilkan Bio-oil sebagai Energi Alternatif." Buletin Profesi Insinyur 3, no. 2 (2020): 83-88. https://doi.org/10.20527/bpi.v3i2.67

[17] Dadi, Venkata Surya, Sridevi Veluru, Hemanth Kumar Tanneru, Rajasekhar Reddy Busigari, Ramesh Potnuri, Anirudh Kulkarni, Garima Mishra and Tanmay Basak. "Recent advancements of CFD and heat transfer studies in pyrolysis: a review." Journal of Analytical and Applied Pyrolysis 175 (2023): 106163. https://doi.org/10.1016/j.jaap.2023.106163

[18] Choi, Sang Kyu, Yeon Seok Choi, Yeon Woo Jeong, So Young Han and Quynh Van Nguyen. "Simulation of co-pyrolysis of coffee ground and waste polystyrene foam in a tilted-slide reactor." Biomass and Bioenergy 177 (2023): 106933. https://doi.org/10.1016/j.biombioe.2023.106933

[19] Wibowo, Adhana Tito Hary, Ruri Agung Wahyuono and Gunawan Nugroho. "Studi numerik pengaruh geometri dan desain diffuser untuk peningkatan kinerja DAWT (diffuser augmented wind turbine)." Jurnal Teknik Mesin 14, no. 2 (2013): 90-96.

[20] Akmal, Saiful, Nasrul Za and Ishak. “Analisa Laju Korosi Baja Karbon ST-37 Dalam Larutan Asam Sulfat Dengan Analisa Profil Aliran Fluida Cair Dan Pressure Drop Pada Pipa L Menggunakan Metode Simulasi Computational Fluid Dynamic (Cfd).” Jurnal Teknologi Kimia Unimal 8 no. 1, (2019): 97–108. https://doi.org/10.29103/jtku.v8i1.3396

Downloads

Published

2025-02-28

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.