The Effect of Thermophoresis on MHD Stream of a Micropolar Liquid Through a Porous Medium with Variable Heat and Mass Flux and Thermal Radiation

Authors

  • P. Roja Department of Humanities and Sciences, Annamacharya Institute of Technology and Sciences, Rajmpeta, Kadapa-516126, A.P., India
  • T. Sankar Reddy Department of Humanities and Sciences, Annamacharya Institute of Technology and Sciences, C. K. Dinne, Kadapa-516003, A.P., India
  • S. M. Ibrahim Department of Mathematics, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, -520045, India
  • G. Lorenzini Department of Industrial Engineering, University of Parma, Parco Area delleScienze 181/A, Parma, 43124, Italy
  • Nor Azwadi Che Sidik Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.37934/cfdl.14.4.118136

Keywords:

Thermal Radiation, Thermophoresis, MHD, Micropolar, Porous Medium, Heat and Mass flux

Abstract

In this paper, the combined possessions of thermal radiation and thermophoresis on stable Magnetohydrodynamic free convection stream of a micropolar liquid past an erect porous laminate during a porous medium in the occurrence of variable heat and mass fluxes are engaged into report is measured. The leading non-linear partial differential equations of the crisis are changed into a scheme of nonlinear ordinary differential equations during suitable similarity conversion and Runge–Kutta Fourth order with shooting procedure scheme. The possessions of a variety of substantial parameters on the dimensionless stream, microrotation, temperature, and concentration profiles are discussed and offered graphically. In the end, numerical ideals of the substantial quantities, such as the limited skin factor, the combine stress coefficient, the local Nusselt quantity and the local Sherwood quantity are tabulated with the variant of magnetic constraint, coupling invariable, Darcy constraint, modified Forchheimer number, radiation constraint, and thermophoretic constraints.

Author Biographies

P. Roja, Department of Humanities and Sciences, Annamacharya Institute of Technology and Sciences, Rajmpeta, Kadapa-516126, A.P., India

tsthummalamaths@gmail.com

T. Sankar Reddy, Department of Humanities and Sciences, Annamacharya Institute of Technology and Sciences, C. K. Dinne, Kadapa-516003, A.P., India

tsthummalamaths@gmail.com

S. M. Ibrahim, Department of Mathematics, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, -520045, India

sibrahim@gitam.edu

G. Lorenzini, Department of Industrial Engineering, University of Parma, Parco Area delleScienze 181/A, Parma, 43124, Italy

giulio.lorenzini@unipr.it

Nor Azwadi Che Sidik, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia

azwadi@utm.my

References

Eringen, A. Cemal. "Theory of micropolar fluids." Journal of Mathematics and Mechanics (1966): 1-18. https://doi.org/10.1512/iumj.1967.16.16001

Eringen, A. Cemal. "Theory of thermomicrofluids." Journal of Mathematical Analysis and Applications 38, no. 2 (1972): 480-496. https://doi.org/10.1016/0022-247X(72)90106-0

Eringen, A. Cemal. Microcontinuum field theories: II. Fluent media. Vol. 2. Springer Science & Business Media, 2001.

Lukaszewicz, Grzegorz. Micropolar fluids: theory and applications. Springer Science & Business Media, 1999.

Chiu, C-P., and H-M. Chou. "Free convection in the boundary layer flow of a micropolar fluid along a vertical wavy surface." Acta Mechanica 101, no. 1 (1993): 161-174. https://doi.org/10.1007/BF01175604

Hassanien, I. A., and R. S. R. Gorla. "Heat transfer to a micropolar fluid from a non-isothermal stretching sheet with suction and blowing." Acta Mechanica 84, no. 1 (1990): 191-199. https://doi.org/10.1007/BF01176097

Gorla, R. S. R. "Mixed convection boundary layer flow of a micropolar fluid on a horizontal plate." Acta Mechanica 108, no. 1 (1995): 101-109. https://doi.org/10.1007/BF01177331

Khan, Ansab Azam, Khairy Zaimi, Suliadi Firdaus Sufahani, and Mohammad Ferdows. "MHD Flow and Heat Transfer of Double Stratified Micropolar Fluid over a Vertical Permeable Shrinking/Stretching Sheet with Chemical Reaction and Heat Source." Journal of Advanced Research in Applied Sciences and Engineering Technology 21, no. 1 (2020): 1-14. https://doi.org/10.37934/araset.21.1.114

Bakar, Fairul Naim Abu, and Siti Khuzaimah Soid. "MHD Stagnation-Point Flow and Heat Transfer Over an Exponentially Stretching/Shrinking Vertical Sheet in a Micropolar Fluid with a Buoyancy Effect." Journal of Advanced Research in Numerical Heat Transfer 8, no. 1 (2022): 50-55.

Ewis, Karem Mahmoud. "Analytical Solution of Modified Bingham Fluid Flow through Parallel Plates Channel Subjected to Forchheimer Medium and Hall Current Using Linearized Differential Transformation Method." Journal of Advanced Research in Numerical Heat Transfer 4, no. 1 (2021): 14-31.

Thirupathi, G., K. Govardhan, and G. Narender. "Radiative Magnetohydrodynamics Casson Nanofluid Flow and Heat and Mass Transfer past on Nonlinear Stretching Surface." Journal of Advanced Research in Numerical Heat Transfer 6, no. 1 (2021): 1-21.

Akaje, T. W., and B. I. Olajuwon. "Impacts of Nonlinear thermal radiation on a stagnation point of an aligned MHD Casson nanofluid flow with Thompson and Troian slip boundary condition." Journal of Advanced Research in Experimental Fluid Mechanics and Heat Transfer 6, no. 1 (2021): 1-15.

Baharin, Nur Marissa Kamarul, Mohd Azan Mohammed Sapardi, Nur Nadhirah Ab Razak, Ahmad Hussein Abdul Hamid, and Syed Noh Syed Abu Bakar. "Study on Magnetohydrodynamic Flow Past Two Circular Cylinders in Staggered Arrangement." CFD Letters 13, no. 11 (2021): 65-77. https://doi.org/10.37934/cfdl.13.11.6577

Alkasasbeh, Hamzeh T. "Numerical Solution of Heat Transfer Flow of Casson Hybrid Nanofluid over Vertical Stretching Sheet with Magnetic Field Effect." CFD Letters 14, no. 3 (2022): 39-52. https://doi.org/10.37934/cfdl.14.3.3952

Mansour, M. A., A. A. Mohammadein, S. M. M. El-Kabeir, and R. S. R. Gorla. "Heat Transfer from Moving Surfaces in a Micropolar Fluid." Canadian Journal of Physics 77, no. 6 (1999): 463-471. https://doi.org/10.1139/p99-046

Musa, Solihin, Nor Azwadi Che Sidik, Siti Nurul Akmal Yusof, and Erdiwansyah Erdiwansyah. "Analysis of Internal Flow in Bag Filter by Different Inlet Angle." Journal of Advanced Research in Numerical Heat Transfer 3, no. 1 (2020): 12-24.

Chen, Han-Taw, and Cha'o-Kuang Chen. "Natural convection of a non-Newtonian fluid about a horizontal cylinder and a sphere in a porous medium." International Communications in Heat and Mass Transfer 15, no. 5 (1988): 605-614. https://doi.org/10.1016/0735-1933(88)90051-6

Nakayama, A., and H. Koyama. "Buoyancy-induced flow of non-Newtonian fluids over a non-isothermal body of arbitrary shape in a fluid-saturated porous medium." Applied Scientific Research 48, no. 1 (1991): 55-70. https://doi.org/10.1007/BF01998665

Yang, Yue-Tzu, and Sae-Jan Wang. "Free convection heat transfer of non-Newtonian fluids over axisymmetric and two-dimensional bodies of arbitrary shape embedded in a fluid-saturated porous medium." International Journal of Heat and Mass Transfer 39, no. 1 (1996): 203-210. https://doi.org/10.1016/S0017-9310(96)85016-2

Rastogi, S. K., and D. Poulikakos. "Double-diffusion from a vertical surface in a porous region saturated with a non-Newtonian fluid." International Journal of Heat and Mass Transfer 38, no. 5 (1995): 935-946. https://doi.org/10.1016/0017-9310(94)00198-5

Kim, Youn J. "Heat and mass transfer in MHD micropolar flow over a vertical moving porous plate in a porous medium." Transport in Porous Media 56, no. 1 (2004): 17-37. https://doi.org/10.1023/B:TIPM.0000018420.72016.9d

Reddy, T. Sankar, V. Ramachandra Prasad, P. Roja, and N. Bhaskar Reddy. " Radiation consequences on MHD mixed convection stream of a micropolar liquid past a semi-infinite moving porous plate in a porous medium with heat absorption." International Journal of Applied Mathematics and Mechanics 6, no. 18 (2010): 80-101.

Cogley, Allen C., Walter G. Vincent, and Scott E. Gilles. "Differential approximation for radiative transfer in a nongrey gas near equilibrium." AIAA Journal 6, no. 3 (1968): 551-553. https://doi.org/10.2514/3.4538

Kim, Youn J., and Andrei G. Fedorov. "Transient mixed radiative convection flow of a micropolar fluid past a moving, semi-infinite vertical porous plate." International Journal of Heat and Mass Transfer 46, no. 10 (2003): 1751-1758. https://doi.org/10.1016/S0017-9310(02)00481-7

Makinde, Oluwole D. "Free convection stream with thermal radiation and mass transport past a moving vertical porous plate." International Communications in Heat and Mass Transfer 32, no. 10 (2005): 1411-1419. https://doi.org/10.1016/j.icheatmasstransfer.2005.07.005

Ibrahim, F. S., A. M. Elaiw, and A. A. Bakr. "Influence of viscous dissipation and radiation on unsteady MHD mixed convection flow of micropolar fluids." Applied Mathematics & Information Sciences 2, no. 2 (2008): 143-162.

Rahman, M. M., and M. A. Sattar. "Transient convective flow of micropolar fluid past a continuously moving vertical porous plate in the presence of radiation." International Journal of Applied Mechanics and Engineering 12, no. 2 (2007): 497-513.

Dutta, B. K., P. Roy, and A. S. Gupta. "Temperature field in flow over a stretching sheet with uniform heat flux." International Communications in Heat and Mass Transfer 12, no. 1 (1985): 89-94. https://doi.org/10.1016/0735-1933(85)90010-7

Elbashbeshy, Elsayed MA. "Heat transfer over a stretching surface with variable surface heat flux." Journal of Physics D: Applied Physics 31, no. 16 (1998): 1951-1956. https://doi.org/10.1088/0022-3727/31/16/002

Elbashbeshy, E. M. A., and M. A. Bazid. "The mixed convection along a vertical plate with variable surface heat flux embedded in porous medium." Applied Mathematics and Computation 125, no. 2-3 (2002): 317-324. https://doi.org/10.1016/S0096-3003(00)00134-X

Rahman, M. M., and Tamanna Sultana. "Radiative heat transfer flow of micropolar fluid with variable heat flux in a porous medium." Nonlinear Analysis: Modelling and Control 13, no. 1 (2008): 71-87. https://doi.org/10.15388/NA.2008.13.1.14590

Ishak, Anuar, Roslinda Nazar, and Ioan Pop. "Heat transfer over a stretching surface with variable heat flux in micropolar fluids." Physics Letters A 372, no. 5 (2008): 559-561. https://doi.org/10.1016/j.physleta.2007.08.003

Mandal, Iswar Chandra, and Swati Mukhopadhyay. "Heat transfer analysis for fluid flow over an exponentially stretching porous sheet with surface heat flux in porous medium." Ain Shams Engineering Journal 4, no. 1 (2013): 103-110. https://doi.org/10.1016/j.asej.2012.06.004

Ganesan, P., and G. Palani. "Finite difference analysis of unsteady natural convection MHD flow past an inclined plate with variable surface heat and mass flux." International Journal of Heat and Mass Transfer 47, no. 19-20 (2004): 4449-4457. https://doi.org/10.1016/j.ijheatmasstransfer.2004.04.034

Talbot, L., R. K. Cheng, R. W. Schefer, and D. R. Willis. "Thermophoresis of particles in a heated boundary layer." Journal of Fluid Mechanics 101, no. 4 (1980): 737-758. https://doi.org/10.1017/S0022112080001905

Batchelor, G. K., and C. Shen. "Thermophoretic deposition of particles in gas flowing over cold surfaces." Journal of Colloid and Interface Science 107, no. 1 (1985): 21-37. https://doi.org/10.1016/0021-9797(85)90145-6

Mills, A. F., Hang Xu, and F. Ayazi. "The effect of wall suction and thermophoresis on aerosol particle deposition from a laminar boundary layer on a flat plate." International Journal of Heat and Mass Transfer 27, no. 7 (1984): 1110-1113. https://doi.org/10.1016/0017-9310(84)90127-3

Goren, Simon L. "Thermophoresis of aerosol particles in the laminar boundary layer on a flat plate." Journal of Colloid and Interface Science 61, no. 1 (1977): 77-85. https://doi.org/10.1016/0021-9797(77)90416-7

Epstein, Michael, G. M. Hauser, and R. E. Henry. "Thermophoretic deposition of particles in natural convection flow from a vertical plate." Journal of Heat Transfer 107, no. 2 (1985): 272-276. https://doi.org/10.1115/1.3247410

Garg, Vijay K., and S. Jayaraj. "Thermophoresis of aerosol particles in laminar flow over inclined plates." International Journal of Heat and Mass Transfer 31, no. 4 (1988): 875-890. https://doi.org/10.1016/0017-9310(88)90144-5

Opiolka, S., F. Schmidt, and H. Fissan. "Combined effects of electrophoresis and thermophoresis on particle deposition onto flat surfaces." Journal of Aerosol Science 25, no. 4 (1994): 665-671. https://doi.org/10.1016/0021-8502(94)90007-8

Selim, A., M. A. Hossain, and D. A. S. Rees. "The effect of surface mass transfer on mixed convection flow past a heated vertical flat permeable plate with thermophoresis." International Journal of Thermal Sciences 42, no. 10 (2003): 973-982. https://doi.org/10.1016/S1290-0729(03)00075-9

Wang, Chi-Chang. "Combined effects of inertia and thermophoresis on particle deposition onto a wafer with wavy surface." International Journal of Heat and Mass Transfer 49, no. 7-8 (2006): 1395-1402. https://doi.org/10.1016/j.ijheatmasstransfer.2005.09.036

Alam, M. S., M. M. Rahman, and M. A. Sattar. "Effects of variable suction and thermophoresis on steady MHD combined free-forced convective heat and mass transfer flow over a semi-infinite permeable inclined plate in the presence of thermal radiation." International Journal of Thermal Sciences 47, no. 6 (2008): 758-765. https://doi.org/10.1016/j.ijthermalsci.2007.06.006

Duwairi, H. M., and Rebhi A. Damseh. "Effect of thermophoresis particle deposition on mixed convection from vertical surfaces embedded in saturated porous medium." International Journal of Numerical Methods for Heat & Fluid Flow 18, no. 2 (2008): 202-216. https://doi.org/10.1108/09615530810846347

Pakravan, Hossein Ali, and Mahmood Yaghoubi. "Combined thermophoresis, Brownian motion and Dufour effects on natural convection of nanofluids." International Journal of Thermal Sciences 50, no. 3 (2011): 394-402. https://doi.org/10.1016/j.ijthermalsci.2010.03.007

Jena, S. Ko, and M. N. Mathur. "Similarity solutions for laminar free convection flow of a thermomicropolar fluid past a non-isothermal vertical flat plate." International Journal of Engineering Science 19, no. 11 (1981): 1431-1439. https://doi.org/10.1016/0020-7225(81)90040-9

Peddison, J., and R. P. McNitt. "Boundary-layer theory for a micropolar fluid." Recent Advances in Engineering Science 5 (1970): 405-426.

Brewster, M. Quinn. Thermal radiative transfer and properties. John Wiley & Sons, 1992.

Downloads

Published

2022-05-06

How to Cite

P. Roja, T. Sankar Reddy, S. M. Ibrahim, G. Lorenzini, & Nor Azwadi Che Sidik. (2022). The Effect of Thermophoresis on MHD Stream of a Micropolar Liquid Through a Porous Medium with Variable Heat and Mass Flux and Thermal Radiation. CFD Letters, 14(4), 118–136. https://doi.org/10.37934/cfdl.14.4.118136

Issue

Section

Articles

Most read articles by the same author(s)