Thermo-Solutal Convection of Carreau-Yasuda Non-Newtonian Fluids in Inclined Square Cavities Under Dufour and Soret Impacts

Authors

  • Selma Lounis Department of Process Engineering and Environment, University of Medea, LME, Medea 26000, Algeria
  • Redha Rebhi Department of Mechanical Engineering, Faculty of Technology, University of Medea, Medea 26000, Algeria
  • Noureddine Hadidi Department of Process Engineering and Environment, University of Medea, LME, Medea 26000, Algeria
  • Giulio Lorenzini Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze, 181/A, Parma 43124, Italy
  • Younes Menni Department of Technology, University Center Salhi Ahmed Naama (Ctr Univ Naama), P.O. Box 66, Naama 45000, Algeria
  • Houari Ameur Department of Technology, University Center Salhi Ahmed Naama (Ctr Univ Naama), P.O. Box 66, Naama 45000, Algeria
  • Nor Azwadi Che Sidik Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.37934/cfdl.14.3.96118

Keywords:

complex fluids, Rayleigh-Bénard thermosolutal convection, Carreau-Yasuda model, Soret number, Dufour number

Abstract

The thermosolutal convection of non-Newtonian fluids under Soret and Dufour influences within an inclined square enclosure is explored. The active walls are subject to constant and uniform concentrations and temperatures. On the other hand, they are impermeable and adiabatic. A Carreau-Yasuda model is utilized to determine the fluid behavior. A special attention is paid to the impact of rheological parameters (, ,  and ), the thermal Rayleigh number , Dufour number, , Soret number, , Lewis number, , buoyancy ratio, , and the inclination angel, . The numerical findings are represented in terms thermal fields, iso-concentration, and viscosity apparent contours, and the influence of certain parameters on the variation of stream function, Nusselt and Sherwood numbers, and apparent viscosity is also inspected. The findings suggest that the rise of the time constant parameter, , causes an increase in thermal and mass exchange for various power-law indices, . The decrease of the of ratio of infinite-to zero-shear-rate viscosities, , and parameter, , enhances the both thermal and mass transfers. The rise of the orientation angel  from 0° to 90°yields an increase in thermal and mass transfer, but without a specific pattern in the different parameters studied.

Author Biographies

Selma Lounis, Department of Process Engineering and Environment, University of Medea, LME, Medea 26000, Algeria

Giulio.lorenzini@unipr.it

Redha Rebhi, Department of Mechanical Engineering, Faculty of Technology, University of Medea, Medea 26000, Algeria

rere.univ26000@gmail.com

Noureddine Hadidi, Department of Process Engineering and Environment, University of Medea, LME, Medea 26000, Algeria

hadd71@yahoo.fr

Giulio Lorenzini, Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze, 181/A, Parma 43124, Italy

Giulio.lorenzini@unipr.it

Younes Menni, Department of Technology, University Center Salhi Ahmed Naama (Ctr Univ Naama), P.O. Box 66, Naama 45000, Algeria

menniyounes.cfd@gmail.com

Houari Ameur, Department of Technology, University Center Salhi Ahmed Naama (Ctr Univ Naama), P.O. Box 66, Naama 45000, Algeria

ameur@cuniv-naama.dz

Nor Azwadi Che Sidik, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia

azwadi@utm.my

References

Beghein, C., F. Haghighat, and F. Allard. "Numerical study of double-diffusive natural convection in a square cavity." International Journal of Heat and Mass Transfer 35, no. 4 (1992): 833-846. https://doi.org/10.1016/0017-9310(92)90251-M

Nield, D.A.; Bejan, A. "Convection in Porous Media." 2nd ed., Springer Verlag, New York, 1999.

Benhadji, K., and P. Vasseur. "Double diffusive convection in a shallow porous cavity filled with a non-Newtonian fluid." International communications in heat and mass transfer 28, no. 6 (2001): 763-772. https://doi.org/10.1016/S0735-1933(01)00280-9

Lamsaadi, M., M. Naimi, and M. Hasnaoui. "Natural convection of non-Newtonian power law fluids in a shallow horizontal rectangular cavity uniformly heated from below." Heat and Mass Transfer 41, no. 3 (2005): 239-249. https://doi.org/10.1007/s00231-004-0530-8

Nield, D.A.; Bejan, A. "Convection in Porous Media, 4th ed., Springer-Verlag, 2013.

Ingham, D.B.; Pop, I. "Transport Phenomena in Porous Media, Pergamon, 1998.

Pop, I.; Ingham, D.B. "Convective Heat Transfer: Mathematical and Computational Modelling of Viscous Fluids and Porous Media." Pergamon, Oxford, 2001.

Ohta, Mitsuhiro, Masayuki Ohta, Makoto Akiyoshi, and Eiji Obata. "A numerical study on natural convective heat transfer of pseudoplastic fluids in a square cavity." Numerical Heat Transfer: Part A: Applications 41, no. 4 (2002): 357-372. https://doi.org/10.1080/104077802317261218

Kim, Gi Bin, Jae Min Hyun, and Ho Sang Kwak. "Transient buoyant convection of a power-law non-Newtonian fluid in an enclosure." International journal of heat and mass transfer 46, no. 19 (2003): 3605-3617. https://doi.org/10.1016/S0017-9310(03)00149-2

Pericleous, K.A. "Heat transfer in differentially heated non-Newtonian cavities." Int. J. Num. Methods Heat Fluid Flow 1994, 4(3), 229-248. https://doi.org/10.1108/EUM0000000004040

Turan, O.; Sachdeva, A.; Chakraborty, N.; Poole, R.J. "Laminar natural convection of power-law fluids in a square enclosure with differentially heated walls subjected to constant temperatures." J. Non-Newtonian Fluid Mech. 2011, 166, 1049-1063. https://doi.org/10.1016/j.jnnfm.2011.06.003

Lamsaadi, M., M. Naimi, M. Hasnaoui, and M. Mamou. "Natural convection in a vertical rectangular cavity filled with a non-Newtonian power law fluid and subjected to a horizontal temperature gradient." Numerical Heat Transfer, Part A: Applications 49, no. 10 (2006): 969-990. https://doi.org/10.1080/10407780500324988

Balmforth, Neil J., and Alison C. Rust. "Weakly nonlinear viscoplastic convection." Journal of Non-Newtonian Fluid Mechanics 158, no. 1-3 (2009): 36-45. https://doi.org/10.1016/j.jnnfm.2008.07.012

Benouared, Ouahiba, Mahmoud Mamou, and Noureddine Ait Messaoudene. "Numerical nonlinear analysis of subcritical Rayleigh-Bénard convection in a horizontal confined enclosure filled with non-Newtonian fluids." Physics of Fluids 26, no. 7 (2014): 073101. https://doi.org/10.1063/1.4890829

Alloui, Z., and P. Vasseur. "Natural convection of Carreau–Yasuda non-Newtonian fluids in a vertical cavity heated from the sides." International Journal of Heat and Mass Transfer 84 (2015): 912-924. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.092

Kefayati, G.H.R. "Simulation of double diffusive natural convection and entropy generation of power-law fluids in an inclined porous cavity with Soret and Dufour effects (Part I: Study of fluid flow, heat and mass transfer)." International Journal of Heat and Mass Transfer 2016, 94, 539-581. https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.044

Khechiba, Khaled, Mahmoud Mamou, Madjid Hachemi, Nassim Delenda, and Redha Rebhi. "Effect of Carreau-Yasuda rheological parameters on subcritical Lapwood convection in horizontal porous cavity saturated by shear-thinning fluid." Physics of Fluids 29, no. 6 (2017): 063101. https://doi.org/10.1063/1.4986794

Krishna, M. Veera, and G. Subba Reddy. "MHD forced convective flow of non-Newtonian fluid through stumpy permeable porous medium." Materials Today: Proceedings 5, no. 1 (2018): 175-183. https://doi.org/10.1016/j.matpr.2017.11.069

Wu, Ping-Yao, Ta-Jo Liu, and Hsu-Ming Chang. "Natural convection of non-Newtonian liquids in a cylindrical enclosure." Numerical Heat Transfer 25, no. 3 (1994): 363-371. https://doi.org/10.1080/10407789408955954

Khellaf, K., and G. Lauriat. "Numerical study of heat transfer in a non-Newtonian Carreau-fluid between rotating concentric vertical cylinders." Journal of non-newtonian fluid mechanics 89, no. 1-2 (2000): 45-61. https://doi.org/10.1016/S0377-0257(99)00030-0

Raisi, Afrasiab. "The influence of a pair constant temperature baffles on power-law fluids natural convection in a square enclosure." Modares Mechanical Engineering 15, no. 11 (2016): 215-224.

Shahmardan, Mohammad Mohsen, Mahmood Norouzi, and Amir Naqhikhani. "Numerical Simulation of Non-Newtonian fluid flows through a channel with a cavity." Modares Mechanical Engineering 14, no. 6 (2014): 35-40.

Guha, Abhijit, and Kaustav Pradhan. "Natural convection of non-Newtonian power-law fluids on a horizontal plate." International Journal of Heat and Mass Transfer 70 (2014): 930-938. https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.001

Kefayati, GH R. "Simulation of non-Newtonian molten polymer on natural convection in a sinusoidal heated cavity using FDLBM." Journal of Molecular Liquids 195 (2014): 165-174. https://doi.org/10.1016/j.molliq.2014.02.031

Vinogradov, Igor, Lyes Khezzar, and D. Siginer. "Heat transfer of non-Newtonian dilatant power law fluids in square and rectangular cavities." Journal of Applied Fluid Mechanics 4, no. 3 (2011): 37-42.. https://doi.org/10.36884/jafm.4.03.11932

Khelifa, N. Ben, Z. Alloui, H. Beji, and P. Vasseur. "Natural convection in a horizontal porous cavity filled with a non-Newtonian binary fluid of power-law type." Journal of Non-Newtonian Fluid Mechanics 169 (2012): 15-25. https://doi.org/10.1016/j.jnnfm.2011.11.002

Kefayati, GH R., and H. Tang. "Three-dimensional Lattice Boltzmann simulation on thermosolutal convection and entropy generation of Carreau-Yasuda fluids." International Journal of Heat and Mass Transfer 131 (2019): 346-364. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.076

Bihiche, K., M. Lamsaadi, and M. Hasnaoui. "Multiple steady state solutions for double-diffusive convection in a shallow horizontal rectangular cavity uniformly heated and salted from the side and filled with non-Newtonian power-law fluids." Journal of Non-Newtonian Fluid Mechanics 283 (2020): 104349. https://doi.org/10.1016/j.jnnfm.2020.104349

Alloui, Z., R. Ouzani, and P. Vasseur. "Thermocapillary-buoyancy convection of a power-law fluid layer heated from below." Journal of Non-Newtonian Fluid Mechanics 282 (2020): 104332. https://doi.org/10.1016/j.jnnfm.2020.104332

Tizakast, Youssef, Mourad Kaddiri, and Mohamed Lamsaadi. "Double-diffusive mixed convection in rectangular cavities filled with non-Newtonian fluids." International Journal of Mechanical Sciences 208 (2021): 106667. https://doi.org/10.1016/j.ijmecsci.2021.106667

Rebhi, Redha, Mahmoud Mamou, and Noureddine Hadidi. "Bistability bifurcation phenomenon induced by non-Newtonian fluids rheology and thermosolutal convection in Rayleigh–Bénard convection." Physics of Fluids 33, no. 7 (2021): 073104. https://doi.org/10.1063/5.0051058

Makayssi, T., M. Lamsaadi, and M. Kaddiri. "Natural double-diffusive convection for the Carreau shear-thinning fluid in a square cavity submitted to horizontal temperature and concentration gradients." Journal of Non-Newtonian Fluid Mechanics 297 (2021): 104649. https://doi.org/10.1016/j.jnnfm.2021.104649

Gray, Donald D., and Aldo Giorgini. "The validity of the Boussinesq approximation for liquids and gases." International Journal of Heat and Mass Transfer 19, no. 5 (1976): 545-551. https://doi.org/10.1016/0017-9310(76)90168-X

Yasuda, K. Y., R. C. Armstrong, and R. E. Cohen. "Shear flow properties of concentrated solutions of linear and star branched polystyrenes." Rheologica Acta 20, no. 2 (1981): 163-178. https://doi.org/10.1007/BF01513059

Bird, B.R.; Armstrong, R.C.; Hassager, O. "Dynamic of polymeric liquids." John Wiley and Sons Inc., New York, 1978.

Escudier, M. P., I. W. Gouldson, A. S. Pereira, F. T. Pinho, and R. J. Poole. "On the reproducibility of the rheology of shear-thinning liquids." Journal of Non-Newtonian Fluid Mechanics 97, no. 2-3 (2001): 99-124. https://doi.org/10.1016/S0377-0257(00)00178-6

Allouche, Mohamed Hatem, Valéry Botton, Daniel Henry, Séverine Millet, R. Usha, and H. Ben Hadid. "Experimental determination of the viscosity at very low shear rate for shear thinning fluids by electrocapillarity." Journal of Non-Newtonian Fluid Mechanics 215 (2015): 60-69. https://doi.org/10.1016/j.jnnfm.2014.11.003

Escudier, M. P., R. J. Poole, F. Presti, C. Dales, C. Nouar, C. Desaubry, L. Graham, and L. Pullum. "Observations of asymmetrical flow behaviour in transitional pipe flow of yield-stress and other shear-thinning liquids." Journal of non-newtonian fluid mechanics 127, no. 2-3 (2005): 143-155. https://doi.org/10.1016/j.jnnfm.2005.02.006

Schneck, Paul, and George Veronis. "Comparison of some recent experimental and numerical results in Benard convection." The Physics of Fluids 10, no. 5 (1967): 927-930. https://doi.org/10.1063/1.1762243

Plows, William H. "Some Numerical Results for Two‐Dimensional Steady Laminar Bénard Convection." The Physics of Fluids 11, no. 8 (1968): 1593-1599. https://doi.org/10.1063/1.1692166

Downloads

Published

2022-04-01

How to Cite

Selma Lounis, Redha Rebhi, Noureddine Hadidi, Giulio Lorenzini, Younes Menni, Houari Ameur, & Nor Azwadi Che Sidik. (2022). Thermo-Solutal Convection of Carreau-Yasuda Non-Newtonian Fluids in Inclined Square Cavities Under Dufour and Soret Impacts. CFD Letters, 14(3), 96–118. https://doi.org/10.37934/cfdl.14.3.96118

Issue

Section

Articles

Most read articles by the same author(s)