Numerical Simulation Low Filling Ratio of Sway Sloshing in the Prismatic Tank Using Smoothed Particle Hydrodynamics

Authors

  • Andi Trimulyono Department of Naval Architecture, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto, S.H, Tembalang, Semarang 40275, Indonesia
  • Deddy Chrismianto Department of Naval Architecture, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto, S.H, Tembalang, Semarang 40275, Indonesia
  • Haikal Atthariq Department of Naval Architecture, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto, S.H, Tembalang, Semarang 40275, Indonesia
  • Samuel Samuel Department of Naval Architecture, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto, S.H, Tembalang, Semarang 40275, Indonesia

DOI:

https://doi.org/10.37934/cfdl.14.7.113123

Keywords:

Sway, SPH, CFD, meshless, prismatic tank, vertical baffle

Abstract

Sloshing is one of challenging problem in the free surface flow, because is dealing with large deformation of fluid. The present paper was carried out of numerical sloshing in the prismatic tank that resemble of LNG membrane type carrier. Pressure sensor was used to validate the dynamic pressure in low filling ratio of tank. Forced oscillation motion in sway with f = 1.08 Hz and amplitude of motion 6.52 mm. A single, and double vertical baffles are used to reduce dynamic pressure and hydrodynamic force. The ratio of baffle heigh with water depth is 0.9. A meshless computational fluid dynamics (CFD) was used to reproduce sloshing in the prismatic tank. Smoothed particle hydrodynamics (SPH) is one of the major meshless CFD. In addition, The advanced visualization was performed using Blender version 2.92. The results showed the vertical baffles effectively reduce the dynamic pressure and hydrodynamic force. Moreover, the advanced visualisation made sloshing simulation more realistic, and attracting compare conventional SPH post-processing.

Author Biographies

Andi Trimulyono, Department of Naval Architecture, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto, S.H, Tembalang, Semarang 40275, Indonesia

anditrimulyono@live.undip.ac.id

Deddy Chrismianto, Department of Naval Architecture, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto, S.H, Tembalang, Semarang 40275, Indonesia

deddy.chrismianto@ft.undip.ac.id

Haikal Atthariq, Department of Naval Architecture, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto, S.H, Tembalang, Semarang 40275, Indonesia

atthariq180699@gmail.com

Samuel Samuel, Department of Naval Architecture, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto, S.H, Tembalang, Semarang 40275, Indonesia

samuel@ft.undip.ac.id

References

Subramaniam, Thineshwaran, and Mohammad Rasidi Rasani. "Pulsatile CFD Numerical Simulation to investigate the effect of various degree and position of stenosis on carotid artery hemodynamics." Journal of Advanced Research in Applied Sciences and Engineering Technology 26, no. 2 (2022): 29-40. https://doi.org/10.37934/araset.26.2.2940

Yanuar, Yanuar, Gunawan Gunawan, Allessandro Setyo Anggito Utomo, M. F. Tjiptadi, and M. N. Luthfi. "Variations in The Distance Between Hulls that Affect the Resistance of The Floating Pontoon N219." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 83, no. 2 (2021): 127-134. https://doi.org/10.37934/arfmts.83.2.127134

Trimulyono, Andi, and Ryan Andriawan. "Analisa Pengaruh Perubahan Panjang Chord Dan Ketebalan Blade Pada Turbin Pembangkit Tenaga Arus Dengan Metode Cfd." Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan 8, no. 3 (2012): 112-118. https://doi.org/10.14710/kpl.v8i3.3184

Yohana, Eflita, Aldian Ghani Rahman, Ilham Mile Al'Aziz, Mohamad Said Kartono Tony Suryo Utomo, Khoiri Rozi, Dimaz Aji Laksono, and Kwang-Hwan Choi. "The CFD Application in Analyzing The 024P108 Centrifugal Pump Damage as The Effect of High Vibration using Fluid Flow Discharge Capacity Parameters." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 92, no. 2 (2022): 36-48. https://doi.org/10.37934/arfmts.92.2.3648

Musa, Solihin, Nor Azwadi Che Sidik, Siti Nurul Akmal Yusof, and Erdiwansyah Erdiwansyah. "Analysis of Internal Flow in Bag Filter by Different Inlet Angle." Journal of Advanced Research in Numerical Heat Transfer 3, no. 1 (2020): 12-24.

Zakki, Ahmad Fauzan, and Aulia Windyandari. "Pengembangan Desain Kapal Lng Dengan Cargo Containment System Tipe Membran Bentuk Prismatik Sebagai Solusi Alternatif Kebutuhan Alat Transportasi Gas Alam Cair Di Indonesia." Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan 11, no. 3 (2014): 132-143. https://doi.org/10.14710/kpl.v11i3.7751

Monaghan, Joe J. "Simulating free surface flows with SPH." Journal of Computational Physics 110, no. 2 (1994): 399-406. https://doi.org/10.1006/jcph.1994.1034

Furuichi, Yutaro, and Toshio Tagawa. "Numerical study of the magnetic damping effect on the sloshing of liquid oxygen in a propellant tank." Fluids 5, no. 2 (2020): 88. https://doi.org/10.3390/fluids5020088

Peric, Milovan, Tobias Zorn, Ould el Moctar, Thomas E. Schellin, and Yong-Soo Kim. "Simulation of sloshing in LNG-tanks." Journal of Offshore Mechanics and Arctic Engineering 131, no. 3 (2009). https://doi.org/10.1115/1.3058688

Jiang, Sheng-Chao, Aichun Feng, and Bin Yan. "Numerical simulations for internal baffle effect on suppressing sway-sloshing coupled motion response." Ocean Engineering 250 (2022): 110513. https://doi.org/10.1016/j.oceaneng.2021.110513

Battaglia, Laura, Ezequiel J. López, Marcela A. Cruchaga, Mario A. Storti, and Jorge D'Elía. "Mesh-moving arbitrary Lagrangian-Eulerian three-dimensional technique applied to sloshing problems." Ocean Engineering 256 (2022): 111463. https://doi.org/10.1016/j.oceaneng.2022.111463

Jin, Xin, Min Luo, Mi-An Xue, and Pengzhi Lin. "Resonant sloshing in a rectangular tank under coupled heave and surge excitations." Applied Ocean Research 121 (2022): 103076. https://doi.org/10.1016/j.apor.2022.103076

Ma, Chunlei, Chengwang Xiong, and Guowei Ma. "Numerical study on suppressing violent transient sloshing with single and double vertical baffles." Ocean Engineering 223 (2021): 108557. https://doi.org/10.1016/j.oceaneng.2020.108557

Jin, Qiu, Jianjian Xin, Fulong Shi, and Fan Shi. "Parametric studies on sloshing in a three-dimensional prismatic tank with different water depths, excitation frequencies, and baffle heights by a Cartesian grid method." International Journal of Naval Architecture and Ocean Engineering 13 (2021): 691-706. https://doi.org/10.1016/j.ijnaoe.2021.08.005

Ünal, Uğur Oral, Gürbüz Bilici, and Hakan Akyıldız. "Liquid sloshing in a two-dimensional rectangular tank: a numerical investigation with a T-shaped baffle." Ocean Engineering 187 (2019): 106183. https://doi.org/10.1016/j.oceaneng.2019.106183

Chern, Ming-Jyh, and Nima Vaziri. "SPH model for interaction of sloshing wave with obstacle in shallow water tank." Journal of King Saud University-Engineering Sciences 34, no. 2 (2020): 126-138. https://doi.org/10.1016/j.jksues.2020.07.009

Green, Mashy D., Yipeng Zhou, José M. Dominguez, Moncho G. Gesteira, and Joaquim Peiró. "Smooth particle hydrodynamics simulations of long-duration violent three-dimensional sloshing in tanks." Ocean Engineering 229 (2021): 108925. https://doi.org/10.1016/j.oceaneng.2021.108925

Trimulyono, Andi, Hirotada Hashimoto, and Akihiko Matsuda. "Experimental validation of single-and two-phase smoothed particle hydrodynamics on sloshing in a prismatic tank." Journal of Marine Science and Engineering 7, no. 8 (2019): 247. https://doi.org/10.3390/jmse7080247

Trimulyono, A., Deddy Chrismianto, S. Samuel, and M. H. Aslami. "Single-phase and two-phase smoothed particle hydrodynamics for sloshing in the low filling ratio of the prismatic tank." International Journal of Engineering 34, no. 5 (2021): 1345-1351. https://doi.org/10.5829/ije.2021.34.05b.30

Trimulyono, Andi, Samuel Samuel, and Muhammad Iqbal. "Sloshing Simulation of single-phase and Two-phase SPH using DualSPHysics." Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan 17, no. 2 (2020): 50-57. https://doi.org/10.14710/kapal.v17i2.27892

Zhang, Z. L., M. S. U. Khalid, T. Long, J. Z. Chang, and M. B. Liu. "Investigations on sloshing mitigation using elastic baffles by coupling smoothed finite element method and decoupled finite particle method." Journal of Fluids and Structures 94 (2020): 102942. https://doi.org/10.1016/j.jfluidstructs.2020.102942

Hu, Taian, Shuangqiang Wang, Guiyong Zhang, Zhe Sun, and Bo Zhou. "Numerical simulations of sloshing flows with an elastic baffle using a SPH-SPIM coupled method." Applied Ocean Research 93 (2019): 101950. https://doi.org/10.1016/j.apor.2019.101950

Zhang, Z. L., M. S. U. Khalid, T. Long, M. B. Liu, and C. Shu. "Improved element-particle coupling strategy with δ-SPH and particle shifting for modeling sloshing with rigid or deformable structures." Applied Ocean Research 114 (2021): 102774. https://doi.org/10.1016/j.apor.2021.102774

Trimulyono, Andi, Haikal Atthariq, Deddy Chrismianto, and Samuel Samuel. "Investigation of sloshing in the prismatic tank with vertical and T-shape baffles." Brodogradnja: Teorija i Praksa Brodogradnje i Pomorske Tehnike 73, no. 2 (2022): 43-58. https://doi.org/10.21278/brod73203

Domínguez, Jose M., Georgios Fourtakas, Corrado Altomare, Ricardo B. Canelas, Angelo Tafuni, Orlando García-Feal, Ivan Martínez-Estévez et al. "DualSPHysics: from fluid dynamics to multiphysics problems." Computational Particle Mechanics (2021): 1-29. https://doi.org/10.1007/s40571-021-00404-2

García-Feal, O., A. J. C. Crespo, and M. Gómez-Gesteira. "VisualSPHysics: advanced fluid visualization for SPH models." Computational Particle Mechanics (2021): 1-14. https://doi.org/10.1007/s40571-020-00386-7

Faltinsen, Odd Magnus, and Alexander N. Timokha. Sloshing. Vol. 577. Cambridge: Cambridge University Press, 2009.

Gingold, Robert A., and Joseph J. Monaghan. "Smoothed particle hydrodynamics: theory and application to non-spherical stars." Monthly Notices of The Royal Astronomical Society 181, no. 3 (1977): 375-389. https://doi.org/10.1093/mnras/181.3.375

Lucy, Leon B. "A numerical approach to the testing of the fission hypothesis." The Astronomical Journal 82 (1977): 1013-1024. https://doi.org/10.1086/112164

Liu, Gui-Rong, and Moubin B. Liu. Smoothed particle hydrodynamics: a meshfree particle method. World scientific, 2003. https://doi.org/10.1142/9789812564405

Crespo, A. J. C., M. Gómez-Gesteira, and Robert A. Dalrymple. "Boundary conditions generated by dynamic particles in SPH methods." Computers, Materials and Continua 5, no. 3 (2007): 173-184.

Downloads

Published

2022-07-17

How to Cite

Trimulyono, A., Chrismianto, D., Atthariq, H. ., & Samuel, S. (2022). Numerical Simulation Low Filling Ratio of Sway Sloshing in the Prismatic Tank Using Smoothed Particle Hydrodynamics. CFD Letters, 14(7), 113–123. https://doi.org/10.37934/cfdl.14.7.113123

Issue

Section

Articles