Investigation of Sloshing with Vertical and Horizontal Baffle in the Prismatic Tank using Meshfree CFD

Authors

  • Andi Trimulyono Department of Naval Architecture, Universitas Diponegoro, Indonesia https://orcid.org/0000-0002-0670-4178
  • Sanggam Tulus Mahatabel Owhaamsorrc Gultom Department of Naval Architecture, Universitas Diponegoro, Indonesia
  • Eko Sasmito Hadi Department of Naval Architecture, Universitas Diponegoro, Indonesia
  • Dedi Budi Purwanto Department of Naval Architecture, Sepuluh Nopember Institute of Technology, Indonesia

DOI:

https://doi.org/10.37934/cfdl.15.6.115129

Keywords:

Rolling, SPH, meshfree-CFD, prismatic tank, vertical baffle, horizontal baffle

Abstract

Sloshing is a phenomenon where the tank experiences an external oscillating motion due to the interaction of fluid with tank. The most appropriate way to prevent instability from the sloshing movement is to add baffles or anti-sloshing. This paper was conducted with the 3D simulation of sloshing roll motion on the prismatic tank with a simulation time of 28 seconds. Vertical and Horizontal baffles were used to mitigate sloshing in the prismatic tank. The ratio of baffle height and water depth is 0.7, 0.8 and 0.9. Moreover, horizontal baffle position is 0.1, 0.2, 0.3, and 0.4 respectively, with the tank filling water ratio is 25%. The numerical study was carried out using meshfree CFD, i.e., Smoothed Particle Hydrodynamics. In addition, advanced post-processing was conducted with Blender. The aims of this study were found out the effective baffle configuration ​​to reduce sloshing using vertical and horizontal in the prismatic tank. The results showed the most effective baffle variation for roll motion is 0.9 for vertical baffle and a horizontal baffle height is 0.1 from the water surface. It showed baffles effectively reduces dynamic pressure, hydrodynamic force and free surface deformation

Author Biographies

Andi Trimulyono, Department of Naval Architecture, Universitas Diponegoro, Indonesia

anditrimulyono@live.undip.ac.id

Sanggam Tulus Mahatabel Owhaamsorrc Gultom, Department of Naval Architecture, Universitas Diponegoro, Indonesia

sanggamgultom@students.undip.ac.id

Eko Sasmito Hadi, Department of Naval Architecture, Universitas Diponegoro, Indonesia

ekosasmitohadi@lecturer.undip.ac.id

Dedi Budi Purwanto, Department of Naval Architecture, Sepuluh Nopember Institute of Technology, Indonesia

debudip00@na.its.ac.id

References

Subramaniam, Thineshwaran, and Mohammad Rasidi Rasani. "Pulsatile CFD Numerical Simulation to investigate the effect of various degree and position of stenosis on carotid artery hemodynamics." Journal of Advanced Research in Applied Sciences and Engineering Technology 26, no. 2 (2022): 29-40. https://doi.org/10.37934/araset.26.2.2940

Kamarudin, Saddam, Ishkrizat Taib, Nurul Fitriah Nasir, Zainal Ariff Abidin, Hazimuddin Halif, A. M. T. Arifin, and Mohd Noor Abdullah. "Comparison of Heat Propagation Properties in Different Sizes of Malignant Breast Tumours using Computational Fluid Dynamics." Journal of Advanced Research in Applied Sciences and Engineering Technology 28, no. 3 (2022): 368-375. https://doi.org/10.37934/araset.28.3.368375

Utomo, Allessandro Setyo Anggito, M. F. Tjiptadi, and Muhammad Naufal Luthfi. "Variations in The Distance Between Hulls that Affect the Resistance of The Floating Pontoon N219." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 83, no. 2 (2021): 127-134. https://doi.org/10.37934/arfmts.83.2.127134

Trimulyono, Andi, and Ryan Andriawan. "Analisa Pengaruh Perubahan Panjang Chord Dan Ketebalan Blade Pada Turbin Pembangkit Tenaga Arus Dengan Metode Cfd." Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan 8, no. 3: 112-118.

Yohana, Eflita, Aldian Ghani Rahman, Ilham Mile Al’Aziz, Mohamad Said Kartono Tony Suryo Utomo, Khoiri Rozi, Dimaz Aji Laksono, and Kwang-Hwan Choi. "The CFD Application in Analyzing The 024P108 Centrifugal Pump Damage as The Effect of High Vibration using Fluid Flow Discharge Capacity Parameters." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 92, no. 2 (2022): 36-48. https://doi.org/10.37934/arfmts.92.2.3648

Sidik, Nor Azwadi Che, Solihin Musa, Siti Nurul Akmal Yusof, and Erdiwansyah Erdiwansyah. "Analysis of Internal Flow in Bag Filter by Different Inlet Angle." Journal of Advanced Research in Numerical Heat Transfer 3, no. 1 (2020): 12-24.

Kamal, Muhammad Nabil Farhan, Izuan Amin Ishak, Nofrizalidris Darlis, Nurshafinaz Mohd Maruai, Rahim Jamian, Razlin Abd Rashid, NorAfzanizam Samiran, and Nik Normunira Mat Hassan. "Flow Structure Characteristics of the Simplified Compact Car Exposed to Crosswind Effects using CFD." Journal of Advanced Research in Applied Sciences and Engineering Technology 28, no. 1 (2022): 56-66. https://doi.org/10.37934/araset.28.1.5666

Ridlwan, Asfarur, Haryo Dwito Armono, Shade Rahmawati, and Tuswan Tuswan. "Transmission Coefficient Analysis of Notched Shape Floating Breakwater Using Volume of Fluid Method: A Numerical Study." Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan 18, no. 1 (2021): 41-50. https://doi.org/10.14710/kapal.v18i1.34964

Monaghan, Joe J. "Simulating free surface flows with SPH." Journal of computational physics 110, no. 2 (1994): 399-406. https://doi.org/10.1006/jcph.1994.1034

Gómez-Goñi, Jesús, Carlos A. Garrido-Mendoza, José Luis Cercós, and Leo González. "Two phase analysis of sloshing in a rectangular container with Volume of Fluid (VOF) methods." Ocean Engineering 73 (2013): 208-212. https://doi.org/10.1016/j.oceaneng.2013.07.005

Yu, C. H., T. C. Wu, R. D. An, and Y. L. Li. "Numerical simulation for liquid sloshing with baffle by the CLSVOF/IB method." Ocean Engineering 258 (2022): 111732. https://doi.org/10.1016/j.oceaneng.2022.111732

Jiang, Sheng-Chao, Aichun Feng, and Bin Yan. "Numerical simulations for internal baffle effect on suppressing sway-sloshing coupled motion response." Ocean Engineering 250 (2022): 110513. https://doi.org/10.1016/j.oceaneng.2021.110513

Battaglia, Laura, Ezequiel J. López, Marcela A. Cruchaga, Mario A. Storti, and Jorge D’Elía. "Mesh-moving arbitrary Lagrangian–Eulerian three-dimensional technique applied to sloshing problems." Ocean Engineering 256 (2022): 111463. https://doi.org/10.1016/j.oceaneng.2022.111463

Jin, Xin, Min Luo, Mi-An Xue, and Pengzhi Lin. "Resonant sloshing in a rectangular tank under coupled heave and surge excitations." Applied Ocean Research 121 (2022): 103076. https://doi.org/10.1016/j.apor.2022.103076

Ma, Chunlei, Chengwang Xiong, and Guowei Ma. "Numerical study on suppressing violent transient sloshing with single and double vertical baffles." Ocean Engineering 223 (2021): 108557. https://doi.org/10.1016/j.oceaneng.2020.108557

Jin, Qiu, Jianjian Xin, Fulong Shi, and Fan Shi. "Parametric studies on sloshing in a three-dimensional prismatic tank with different water depths, excitation frequencies, and baffle heights by a Cartesian grid method." International Journal of Naval Architecture and Ocean Engineering 13 (2021): 691-706. https://doi.org/10.1016/j.ijnaoe.2021.08.005

Ünal, Uğur Oral, Gürbüz Bilici, and Hakan Akyıldız. "Liquid sloshing in a two-dimensional rectangular tank: A numerical investigation with a T-shaped baffle." Ocean Engineering 187 (2019): 106183. https://doi.org/10.1016/j.oceaneng.2019.106183

Lyu, Wenjing, Ould el Moctar, and Thomas Schellin. "Investigations of transient sloshing induced impulsive hydrodynamics." Ocean Engineering 258 (2022): 111524. https://doi.org/10.1016/j.oceaneng.2022.111524

Trimulyono, A., Deddy Chrismianto, S. Samuel, and M. H. Aslami. "Single-phase and two-phase smoothed particle hydrodynamics for sloshing in the low filling ratio of the prismatic tank." International Journal of Engineering 34, no. 5 (2021): 1345-1351. https://doi.org/10.5829/ije.2021.34.05b.30

Trimulyono, Andi, Haikal Atthariq, Deddy Chrismianto, and Samuel Samuel. "Investigation of sloshing in the prismatic tank with vertical and T-shape baffles." Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike 73, no. 2 (2022): 43-58. https://doi.org/10.21278/brod73203

Trimulyono, Andi, Deddy Chrismianto, Haikal Atthariq, and Samuel Samuel. "Numerical Simulation Low Filling Ratio of Sway Sloshing in the Prismatic Tank Using Smoothed Particle Hydrodynamics." CFD Letters 14, no. 7 (2022): 113-123. https://doi.org/10.37934/cfdl.14.7.113123

Zhang, Z. L., M. S. U. Khalid, T. Long, J. Z. Chang, and M. B. Liu. "Investigations on sloshing mitigation using elastic baffles by coupling smoothed finite element method and decoupled finite particle method." Journal of Fluids and Structures 94 (2020): 102942. https://doi.org/10.1016/j.jfluidstructs.2020.102942

Hu, Taian, Shuangqiang Wang, Guiyong Zhang, Zhe Sun, and Bo Zhou. "Numerical simulations of sloshing flows with an elastic baffle using a SPH-SPIM coupled method." Applied Ocean Research 93 (2019): 101950. https://doi.org/10.1016/j.apor.2019.101950

Green, Mashy D., Yipeng Zhou, José M. Dominguez, Moncho G. Gesteira, and Joaquim Peiró. "Smooth particle hydrodynamics simulations of long-duration violent three-dimensional sloshing in tanks." Ocean Engineering 229 (2021): 108925. https://doi.org/10.1016/j.oceaneng.2021.108925

Zhang, Z. L., M. S. U. Khalid, T. Long, M. B. Liu, and C. Shu. "Improved element-particle coupling strategy with δ-SPH and particle shifting for modeling sloshing with rigid or deformable structures." Applied Ocean Research 114 (2021): 102774. https://doi.org/10.1016/j.apor.2021.102774

Pilloton, C., A. Bardazzi, A. Colagrossi, and S. Marrone. "SPH method for long-time simulations of sloshing flows in LNG tanks." European Journal of Mechanics-B/Fluids 93 (2022): 65-92. https://doi.org/10.1016/j.euromechflu.2022.01.002

Trimulyono, Andi, Hirotada Hashimoto, and Akihiko Matsuda. "Experimental validation of single-and two-phase smoothed particle hydrodynamics on sloshing in a prismatic tank." Journal of Marine Science and Engineering 7, no. 8 (2019): 247. https://doi.org/10.3390/jmse7080247

Domínguez, Jose M., Georgios Fourtakas, Corrado Altomare, Ricardo B. Canelas, Angelo Tafuni, Orlando García-Feal, Ivan Martínez-Estévez et al., "DualSPHysics: from fluid dynamics to multiphysics problems." Computational Particle Mechanics 9, no. 5 (2022): 867-895. https://doi.org/10.1007/s40571-021-00404-2

García-Feal, O., A. J. C. Crespo, and M. Gómez-Gesteira. "VisualSPHysics: advanced fluid visualization for SPH models." Computational Particle Mechanics (2021): 1-14. https://doi.org/10.1007/s40571-020-00386-7

Faltinsen, Odd Magnus, and Alexander N. Timokha. Sloshing. Vol. 577. Cambridge: Cambridge university press, 2009.

Lucy, Leon B. "A numerical approach to the testing of the fission hypothesis." Astronomical Journal, vol. 82, Dec. 1977, p. 1013-1024. 82 (1977): 1013-1024. https://doi.org/10.1086/112164

Liu, Gui-Rong, and Moubin B. Liu. Smoothed particle hydrodynamics: a meshfree particle method. World scientific, 2003. https://doi.org/10.1142/9789812564405

Downloads

Published

2023-04-20

How to Cite

Trimulyono, A., Gultom, S. T. M. O., Hadi, E. S., & Purwanto, D. B. (2023). Investigation of Sloshing with Vertical and Horizontal Baffle in the Prismatic Tank using Meshfree CFD. CFD Letters, 15(6), 115–129. https://doi.org/10.37934/cfdl.15.6.115129

Issue

Section

Articles