An Investigation of the Effect of Varied Blade Shapes of the Trim Interceptor on the Resistance Characteristics of a Planing Vessel at Medium Speeds
DOI:
https://doi.org/10.37934/cfdl.17.2.8399Keywords:
Interceptor, Resistance, Planing hull, CFD, Blade ShapeAbstract
The use of trim interceptors on fast boats to enhance performance still presents challenges in achieving optimal design across various parameters. The design of interceptor blades with conventional square cross-sections prompts consideration of whether altering the blade shape can affect its effectiveness in minimizing resistance on planing boats. This comprehensive study explores various permutations of interceptor blade shapes and their impact on the characteristics of resistance in planing botas. Computational Fluid Dynamics (CFD) using the Reynolds Averaging Navier-Stokes (RANS) method, verified and validated, is employed to conduct this investigation. The results indicate that the round shape consistently exhibits lower resistance compared to rectangular, ½ V, and full V shapes across a range of speeds (Froude number 0.76 – 0.99).
Downloads
References
Doctors, Lawrence J. Hydrodynamics of high-speed small craft. No. 292. 1985.
Faltinsen, Odd M. Hydrodynamics of high-speed marine vehicles. Cambridge university press, 2005. DOI: https://doi.org/10.1017/CBO9780511546068
Hakim, Muhammad Luqman, Tuswan Tuswan, Ahmad Firdaus, and Ocid Mursid. "Investigating the comparison of ship resistance components between u and v-shaped hulls." Jurnal Teknologi 85, no. 3 (2023): 153-164. https://doi.org/10.11113/jurnalteknologi.v85.19382. DOI: https://doi.org/10.11113/jurnalteknologi.v85.19382
Taunton, D. J., D. A. Hudson, and R. A. Shenoi. "Characteristics of a series of high speed hard chine planing hulls-part 1: performance in calm water." International Journal of Small Craft Technology 152 (2010): 55-75. https://doi.org/10.3940/rina.ijsct.2010.b2.96.
Trimulyono, Andi, Muhammad Luqman Hakim, Chairizal Ardhan, Syaiful Tambah Putra Ahmad, Tuswan Tuswan, and Ari Wibawa Budi Santosa. "Analysis of the double steps position effect on planing hull performances." Brodogradnja: An International Journal of Naval Architecture and Ocean Engineering for Research and Development 74, no. 4 (2023): 41-72. https://doi.org/10.21278/brod74403. DOI: https://doi.org/10.21278/brod74403
Park, Kyurin, Dong Jin Kim, Sun Young Kim, Jeonghwa Seo, Innduk Suh, and Shin Hyung Rhee. "Effect of waterjet intake plane shape on course-keeping stability of a planing boat." International Journal of Naval Architecture and Ocean Engineering 13 (2021): 585-598. https://doi.org/10.1016/j.ijnaoe.2021.06.008. DOI: https://doi.org/10.1016/j.ijnaoe.2021.06.008
Firdhaus, Ahmad, Parlindungan Manik, and Muhammad Luqman Hakim. "CFD Analysis of the Influence of Marine Fouling on the Performance of High-Speed Planning Craft." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 110, no. 2 (2023): 124-137. https://doi.org/10.37934/arfmts.110.2.124137. DOI: https://doi.org/10.37934/arfmts.110.2.124137
Amiruddin, Wilma, Muhammad Luqman Hakim, Ahmad Firdhaus, Dian Purnamasari, Tuswan Tuswan, Samuel Samuel, and Ocid Mursid. "Prediction of the impact of biofouling roughness on a full-scale planing boat performance using CFD." Ocean Engineering 301 (2024): 117457. https://doi.org/10.1016/j.oceaneng.2024.117457. DOI: https://doi.org/10.1016/j.oceaneng.2024.117457
Hakim, Muhammad Luqman, Bagus Nugroho, Rey Cheng Chin, Teguh Putranto, I. Ketut Suastika, and I. Ketut Aria Pria Utama. "Drag penalty causing from the roughness of recently cleaned and painted ship hull using RANS CFD." CFD Letters 12, no. 3 (2020): 78-88. https://doi.org/10.37934/cfdl.12.3.7888. DOI: https://doi.org/10.37934/cfdl.12.3.7888
Hakim, Muhammad Luqman, Niko Maqbulyani, Bagus Nugroho, I. Ketut Suastika, and I. K. A. P. Utama. "Wind-tunnel experiments and CFD simulations to study the increase in ship resistance components due to roughness." Journal of sustainability science and management 16, no. 3 (2021): 144-163. https://doi.org/10.46754/jssm.2021.04.012. DOI: https://doi.org/10.46754/jssm.2021.04.012
Hakim, Muhammad Luqman, Bagus Nugroho, I. Ketut Suastika, and I. K. A. P. Utama. "Alternative empirical formula for predicting the frictional drag penalty due to fouling on the ship hull using the design of experiments (doe) method." International Journal of Technology 12, no. 4 (2021): 829. https://doi.org/10.14716/ijtech.v12i4.4692. DOI: https://doi.org/10.14716/ijtech.v12i4.4692
Hakim, Muhammad Luqman, Dian Purnamasari, Muryadin Muryadin, Fariz Maulana Noor, Putri Virliani, Endah Suwarni, Rina Rina, Nurcholis Nurcholis, and Rio Dwi Sakti Wijaya. "Using trim Control to Improve energy Efficiency on High-Speed Marine Vehicles (HSMV): A Review." (2023): 1603-1615. https://doi.org/10.5109/7151709. DOI: https://doi.org/10.5109/7151709
Samuel, S., Ocid Mursid, Serliana Yulianti, Kiryanto Kiryanto, and Muhammad Iqbal. "Evaluation of interceptor design to reduce drag on planing hull." Brodogradnja: An International Journal of Naval Architecture and Ocean Engineering for Research and Development 73, no. 3 (2022): 93-110. https://doi.org/10.21278/brod73306. DOI: https://doi.org/10.21278/brod73306
Mansoori, M., A. C. Fernandes, and H. Ghassemi. "Interceptor design for optimum trim control and minimum resistance of planing boats." Applied Ocean Research 69 (2017): 100-115. https://doi.org/10.1016/j.apor.2017.10.006. DOI: https://doi.org/10.1016/j.apor.2017.10.006
Fitriadhy, Ahmad, Loke Yan Pheng, Iqmal Nor Hakim Adzkh, Faisal Mahmuddin, Anuar Abu Bakar, Mohd Azlan Musa, and Mohd Sofiyan Sulaiman. "Computational investigation of pitch motion of a high-speed craft incorporated with trim-tabs." CFD Letters 14, no. 6 (2022): 56-71. https://doi.org/10.37934/cfdl.14.6.5671. DOI: https://doi.org/10.37934/cfdl.14.6.5671
Ghadimi, Parviz, Afshin Loni, Hashem Nowruzi, Abbas Dashtimanesh, and Sasan Tavakoli. "Parametric study of the effects of trim tabs on running trim and resistance of planing hulls." Advances in shipping and Ocean Engineering 3, no. 1 (2014): 1-12.
Syahrudin, Muhamad Fuad, Muhammad Arif Budiyanto, and Muhammad Aziz Murdianto. "Analysis of the use of stern foil on the high speed patrol boat on full draft condition." (2020): 262-267. https://doi.org/10.5109/4055230. DOI: https://doi.org/10.5109/4055230
Samuel, Andi Trimulyono, Parlindungan Manik, and Deddy Chrismianto. "A numerical study of spray strips analysis on fridsma hull form." Fluids 6, no. 11 (2021): 420. https://doi.org/10.3390/fluids6110420. DOI: https://doi.org/10.3390/fluids6110420
Lakatoš, Mikloš, Kristjan Tabri, Abbas Dashtimanesh, and Henrik Andreasson. "Numerical Modelling of a Planing Craft with a V-Shaped Spray Interceptor Arrangement in Calm Water." In HSMV 2020, pp. 33-42. IOS Press, 2020. https://doi.org/10.3233/PMST200024. DOI: https://doi.org/10.3233/PMST200024
Lakatoš, Mikloš, Tarmo Sahk, Henrik Andreasson, and Kristjan Tabri. "The effect of spray rails, chine strips and V-shaped spray interceptors on the performance of low planing high-speed craft in calm water." Applied Ocean Research 122 (2022): 103131. https://doi.org/10.1016/j.apor.2022.103131. DOI: https://doi.org/10.1016/j.apor.2022.103131
Karimi, Mohammad Hosein, Mohammad Saeed Seif, and Madjid Abbaspoor. "An experimental study of interceptor’s effectiveness on hydrodynamic performance of high-speed planing crafts." Polish maritime research 20, no. 2 (2013): 21-29. https://doi.org/10.2478/pomr-2013-0013. DOI: https://doi.org/10.2478/pomr-2013-0013
Deng, R., S. Y. Chen, T. C. Wu, F. Q. Luo, D. P. Jiang, and Y. L. Li. "Investigation on the influence induced by interceptor on the viscous flow field of deep-Vee vessel." Ocean Engineering 196 (2020): 106735. https://doi.org/10.1016/j.oceaneng.2019.106735. DOI: https://doi.org/10.1016/j.oceaneng.2019.106735
Jangam, Suneela. "CFD based prediction on hydrodynamic effects of Interceptor and flap combination on planing hull." Ocean Engineering 264 (2022): 112523. https://doi.org/10.1016/j.oceaneng.2022.112523. DOI: https://doi.org/10.1016/j.oceaneng.2022.112523
Batchelor, G. K., and A. D. Young. “An Introduction to Fluid Mechanics.” Journal of Applied Mechanics 35, no. 3 (September 1, 1968): 624–624. https://doi.org/10.1115/1.3601282. DOI: https://doi.org/10.1115/1.3601282
Ferziger, Joel H., and Milovan Perić. Computational methods for fluid dynamics. New York: Springer, 2002. https://doi.org/10.1007/978-3-642-56026-2. DOI: https://doi.org/10.1007/978-3-642-56026-2
Hirt, Cyril W., and Billy D. Nichols. "Volume of fluid (VOF) method for the dynamics of free boundaries." Journal of computational physics 39, no. 1 (1981): 201-225. https://doi.org/10.1016/0021-9991(81)90145-5. DOI: https://doi.org/10.1016/0021-9991(81)90145-5
Menter, Florian R. "Two-equation eddy-viscosity turbulence models for engineering applications." AIAA journal 32, no. 8 (1994): 1598-1605. https://doi.org/10.2514/3.12149. DOI: https://doi.org/10.2514/3.12149
ITTC. “ITTC – Recommended Procedures and Guidelines - Practical Guidelines for Ship CFD Applications. 7.5-03-02-03 (Revision 01).” ITTC – Recommended Procedures and Guidelines, 2014.
Matveev, Konstantin I. "Two-dimensional modeling of stepped planing hulls with open and pressurized air cavities." International Journal of Naval Architecture and Ocean Engineering 4, no. 2 (2012): 162-171. https://doi.org/10.2478/IJNAOE-2013-0087. DOI: https://doi.org/10.3744/JNAOE.2012.4.2.162