Parametric Optimization for Power Generation of Flow Induced Vibration Energy Harvester

Authors

  • Muhammad Hanif Razali Kulliyyah of Engineering, International Islamic University Malaysia, Gombak, 53100 Kuala Lumpur, Malaysia
  • Khairul Affendy Md Nor Kulliyyah of Engineering, International Islamic University Malaysia, Gombak, 53100 Kuala Lumpur, Malaysia
  • Mohd Azan Mohammed Sapardi Kulliyyah of Engineering, International Islamic University Malaysia, Gombak, 53100 Kuala Lumpur, Malaysia
  • Nor Hidayati Diyana Nordin Kulliyyah of Engineering, International Islamic University Malaysia, Gombak, 53100 Kuala Lumpur, Malaysia
  • Fadhlan Hafizhelmi Kamaru Zaman College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Azlee Zabidi Faculty of Computing, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600 Pekan, Pahang, Malaysia

DOI:

https://doi.org/10.37934/cfdl.17.3.109123

Keywords:

flow-induced vibration (FIV), vortex-induced vibration (VIV), wake-induced vibration (WIV), Reynolds number, piezoelectric, gap length

Abstract

Flow-induced vibration occurs when the motion of fluids through a structure induces oscillations or vibrations in the structure. An effective flow-induced vibration energy harvester has substantial challenges due to the river's irregular velocity flows. It is not practicable to use one parameter for all velocities. This work presents the testing of a flow-induced vibrational energy harvester in laminar flow using two circular cylinders positioned in tandem within an open-channel flow. A CFD simulation using COMSOL Multiphysics was performed for the proposed parameter. A comprehensive simulation run at multiple Reynolds numbers with varying gap lengths between the bluff bodies is studied to determine the maximum power generated. Simulation results show that the optimal gap lengths for Re 60, 80, 100, 120, 140, and 160 are 8.5, 6.0, 3.0, 3.0, 3.5, and 4.5, respectively. These gap lengths result in power outputs of 0.0315 W, 2.616 W, 1.899 W, 0.6552 W, 0.5018 W, and 0.3782 W. By demonstrating the relationship between Reynolds number and gap length, this study provides important information for maximising the energy harvesting from flow-induced vibration (FIV).

Downloads

Download data is not yet available.

Author Biographies

Muhammad Hanif Razali, Kulliyyah of Engineering, International Islamic University Malaysia, Gombak, 53100 Kuala Lumpur, Malaysia

hanifrzli111@gmail.com

Khairul Affendy Md Nor, Kulliyyah of Engineering, International Islamic University Malaysia, Gombak, 53100 Kuala Lumpur, Malaysia

affendy@iium.edu.my

Mohd Azan Mohammed Sapardi, Kulliyyah of Engineering, International Islamic University Malaysia, Gombak, 53100 Kuala Lumpur, Malaysia

azan@iium.edu.my

Nor Hidayati Diyana Nordin, Kulliyyah of Engineering, International Islamic University Malaysia, Gombak, 53100 Kuala Lumpur, Malaysia

nhdiyana@iium.edu.my

Fadhlan Hafizhelmi Kamaru Zaman, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

fadhlan@uitm.edu.my

Azlee Zabidi, Faculty of Computing, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600 Pekan, Pahang, Malaysia

azlee@umpsa.edu.my

References

Japar, Wan Mohd Arif Aziz, Nor Azwadi Che Sidik, Natrah Kamaruzaman, Yutaka Asako, and Nura Mu’az Muhammad. "Hydrothermal performance in the Hydrodynamic Entrance Region of Rectangular Microchannel Heat Sink." Journal of Advanced Research in Numerical Heat Transfer 1, no. 1 (2020): 22-31.

Xu, Zidong, Hao Wang, Chenxi Xing, Tianyou Tao, Jianxiao Mao, and Yun Liu. "Physics guided wavelet convolutional neural network for wind-induced vibration modeling with application to structural dynamic reliability analysis." Engineering Structures 297 (2023): 117027. https://doi.org/10.1016/j.engstruct.2023.117027 DOI: https://doi.org/10.1016/j.engstruct.2023.117027

Zhang, Lei, Lin Cheng, Hengyang Li, Jiaying Gao, Cheng Yu, Reno Domel, Yang Yang, Shaoqiang Tang, and Wing Kam Liu. "Hierarchical deep-learning neural networks: finite elements and beyond." Computational Mechanics 67 (2021): 207-230. https://doi.org/10.1007/s00466-020-01928-9 DOI: https://doi.org/10.1007/s00466-020-01928-9

Pinar, Engin, Tahir Durhasan, Göktürk M. Ozkan, Muhammed M. Aksoy, Huseyin Akilli, and Besir Sahin. "The effects of perforated cylinders on the vortex shedding on the suppression of a circular cylinder." In EPJ Web of Conferences, vol. 143, p. 02094. EDP Sciences, 2017. https://doi.org/10.1051/epjconf/201714302094 DOI: https://doi.org/10.1051/epjconf/201714302094

Zahari, M. A., and S. S. Dol. "Effects of different sizes of cylinder diameter on vortex-induced vibration for energy generation." Journal of Applied Sciences 15, no. 5 (2015): 783-791. https://doi.org/10.3923/jas.2015.783.791 DOI: https://doi.org/10.3923/jas.2015.783.791

Atrah, Ahmed B., Mohd Syuhaimi Ab-Rahman, Hanim Salleh, Mohd Zaki Nuawi, Mohd Jailani Mohd Nor, and Nordin Bin Jamaludin. "Karman vortex creation using cylinder for flutter energy harvester device." Micromachines 8, no. 7 (2017): 227. https://doi.org/10.3390/mi8070227 DOI: https://doi.org/10.3390/mi8070227

Naseer, Rashid, Huliang Dai, Abdessattar Abdelkefi, and Lin Wang. "Comparative study of piezoelectric vortex-induced vibration-based energy harvesters with multi-stability characteristics." Energies 13, no. 1 (2019): 71. https://doi.org/10.3390/en13010071 [8] Zhang, Min, and Junlei Wang. "Experimental Study on Piezoelectric Energy Harvesting from Vortex‐Induced Vibrations and Wake‐Induced Vibrations." Journal of Sensors 2016, no. 1 (2016): 2673292. https://doi.org/10.1155/2016/2673292 DOI: https://doi.org/10.3390/en13010071

Han, Peng, Qiaogao Huang, Guang Pan, Wei Wang, Tianqi Zhang, and Denghui Qin. "Energy harvesting from flow-induced vibration of a low-mass square cylinder with different incidence angles." Aip Advances 11, no. 2 (2021). https://doi.org/10.1063/5.0037071 DOI: https://doi.org/10.1063/5.0037071

Abdelkefi, A., M. R. Hajj, and A. H. Nayfeh. "Piezoelectric energy harvesting from transverse galloping of bluff bodies." Smart Materials and Structures 22, no. 1 (2012): 015014. https://doi.org/10.1088/0964-1726/22/1/015014 DOI: https://doi.org/10.1088/0964-1726/22/1/015014

Shao, Ze, Tongming Zhou, Hongjun Zhu, Zhipeng Zang, and Wenhua Zhao. "Amplitude enhancement of flow-induced vibration for energy harnessing." In E3S Web of Conferences, vol. 160, p. 01005. EDP Sciences, 2020. https://doi.org/10.1051/e3sconf/202016001005 DOI: https://doi.org/10.1051/e3sconf/202016001005

Assi, Gustavo RS. "Wake-induced vibration of tandem cylinders of different diameters." Journal of Fluids and Structures 50 (2014): 329-339. https://doi.org/10.1016/j.jfluidstructs.2014.07.001 DOI: https://doi.org/10.1016/j.jfluidstructs.2014.07.001

A´ ssi, Gustavo RS, Julio R. Meneghini, José AP Aranha, Peter W. Bearman, Bruno S. Carmo, and Enrique Casaprima. "Experimental investigation of flow-induced vibrations interference between two circular cylinders in tandem arrangements." In International Conference on Offshore Mechanics and Arctic Engineering, vol. 41952, pp. 273-277. 2005. DOI: https://doi.org/10.1115/OMAE2005-67121

Fan, Xiantao, Zhongchen Wang, Xiaoyu Chen, Yang Wang, and Wei Tan. "Experimental investigation on flow-induced vibration of flexible multi cylinders in atmospheric boundary layer." International Journal of Mechanical Sciences 183 (2020): 105815. https://doi.org/10.1016/j.ijmecsci.2020.105815 DOI: https://doi.org/10.1016/j.ijmecsci.2020.105815

Dahl, J. M., F. S. Hover, M. S. Triantafyllou, and O. H. Oakley. "Dual resonance in vortex-induced vibrations at subcritical and supercritical Reynolds numbers." Journal of Fluid Mechanics 643 (2010): 395-424. https://doi.org/10.1017/S0022112009992060 DOI: https://doi.org/10.1017/S0022112009992060

Wang, Huakun, Dongliang Zhao, Wenyu Yang, and Guoliang Yu. "Numerical investigation on flow-induced vibration of a triangular cylinder at a low Reynolds number." Fluid Dynamics Research 47, no. 1 (2014): 015501. https://doi.org/10.1088/0169-5983/47/1/015501 DOI: https://doi.org/10.1088/0169-5983/47/1/015501

Raghavan, K., and M. M. Bernitsas. "Experimental investigation of Reynolds number effect on vortex induced vibration of rigid circular cylinder on elastic supports." Ocean Engineering 38, no. 5-6 (2011): 719-731. https://doi.org/10.1016/j.oceaneng.2010.09.003 DOI: https://doi.org/10.1016/j.oceaneng.2010.09.003

Govardhan, R. N., and C. H. K. Williamson. "Defining the ‘modified Griffin plot’in vortex-induced vibration: revealing the effect of Reynolds number using controlled damping." Journal of fluid mechanics 561 (2006): 147-180. https://doi.org/10.1017/S0022112006000310 DOI: https://doi.org/10.1017/S0022112006000310

Hassim, Muhammad Ridhwaan, Mohd Azan Mohammed Sapardi, Nur Marissa Kamarul Baharin, Syed Noh Syed Abu Bakar, Muhammad Abdullah, and Khairul Affendy Mohd Nor. "CFD Modelling of Wake-Induced Vibration At Low Reynolds Number." CFD Letters 13, no. 11 (2021): 53-64. https://doi.org/10.37934/cfdl.13.11.5364 DOI: https://doi.org/10.37934/cfdl.13.11.5364

Braza, M., P. H. H. M. Chassaing, and H. Ha Minh. "Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder." Journal of fluid mechanics 165 (1986): 79-130. https://doi.org/10.1017/S0022112086003014 DOI: https://doi.org/10.1017/S0022112086003014

Calhoun, Donna. "A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions." Journal of computational physics 176, no. 2 (2002): 231-275. https://doi.org/10.1006/jcph.2001.6970 DOI: https://doi.org/10.1006/jcph.2001.6970

Liu, C., X. Zheng, and C. H. Sung. "Preconditioned multigrid methods for unsteady incompressible flows." Journal of Computational physics 139, no. 1 (1998): 35-57. https://doi.org/10.1006/jcph.1997.5859 DOI: https://doi.org/10.1006/jcph.1997.5859

Downloads

Published

2024-10-31

Issue

Section

Articles