Hybrid Nanofluids in Solar Thermal Collectors: Size and Cost Reduction Opportunities
DOI:
https://doi.org/10.37934/arnht.28.1.8093Keywords:
Solar thermal collector, Solar energy, NanofluidAbstract
Solar thermal collector, an alternative way to harvest renewable solar energy, requires high heat transfer area. Hybrid nanofluid has potential to reduce the size of the collector due to its high thermal conductivity and low specific heat capacity. This study investigates the effects of Multi-Walled Carbon Nanotubes (MWCNT) combine with metal oxides, including Al2O3, CeO2, TiO2, ZnO at the volume ratio of 1:4 between MWCNT and metal oxides with a total of 1 vol.% in water. The investigation focuses on assessing this nanofluids with 1 kg/min mass flow rate for its effect in size and cost reduction. Following the validation of nanofluids properties predictor and the numerical model of flat plate solar collector with experimental data, the effects in terms of size and cost reduction is evaluated. In best case scenario, the use of MWCNT-TiO2 can reduce the size of flat plate solar thermal collector by up to 8.54% and cost by 5.15% compared to using water as the heat transfer fluid.
Downloads
References
Tanprasert, Sorathan, Nuttima Rangton, Warunee Nukkhong, Pitakchon Wises, Pornpote Piumsomboon, and Benjapon Chalermsinsuwan. "Impact of Biomass Fuel Feeding Ratio in Co-firing Circulating Fluidized Bed Boiler: A Computational Fluid Dynamics Study." Journal of Advanced Research in Numerical Heat Transfer 17, no. 1 (2024): 44-54. https://doi.org/10.37934/arnht.17.1.4454 DOI: https://doi.org/10.37934/arnht.17.1.4454
Gupta, Sanjeev Kumar. "A short & updated review of nanofluids utilization in solar parabolic trough collector." Materials Today: Proceedings (2023). https://doi.org/10.1016/j.matpr.2022.12.278 DOI: https://doi.org/10.1016/j.matpr.2022.12.278
Dincer, Ibrahim. "Environmental impacts of energy." Energy policy 27, no. 14 (1999): 845-854. https://doi.org/10.1016/S0301-4215(99)00068-3 DOI: https://doi.org/10.1016/S0301-4215(99)00068-3
Kalogirou, Soteris A. "Solar thermal collectors and applications." Progress in energy and combustion science 30, no. 3 (2004): 231-295. https://doi.org/10.1016/j.pecs.2004.02.001 DOI: https://doi.org/10.1016/j.pecs.2004.02.001
Tian, Yuan, and Chang-Ying Zhao. "A review of solar collectors and thermal energy storage in solar thermal applications." Applied energy 104 (2013): 538-553. https://doi.org/10.1016/j.apenergy.2012.11.051 DOI: https://doi.org/10.1016/j.apenergy.2012.11.051
Gupta, Sanjeev Kumar, and Shubham Gupta. "The role of nanofluids in solar thermal energy: A review of recent advances." Materials Today: Proceedings 44 (2021): 401-412. https://doi.org/10.1016/j.matpr.2020.09.749 DOI: https://doi.org/10.1016/j.matpr.2020.09.749
Faizal, M., Rahman Saidur, Saad Mekhilef, and Mohammad A. Alim. "Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector." Energy Conversion and Management 76 (2013): 162-168. https://doi.org/10.1016/j.enconman.2013.07.038 DOI: https://doi.org/10.1016/j.enconman.2013.07.038
Verma, Sujit Kumar, Arun Kumar Tiwari, and Durg Singh Chauhan. "Experimental evaluation of flat plate solar collector using nanofluids." Energy conversion and Management 134 (2017): 103-115. https://doi.org/10.1016/j.enconman.2016.12.037 DOI: https://doi.org/10.1016/j.enconman.2016.12.037
Choi, S. US, and Jeffrey A. Eastman. Enhancing thermal conductivity of fluids with nanoparticles. No. ANL/MSD/CP-84938; CONF-951135-29. Argonne National Lab.(ANL), Argonne, IL (United States), 1995.
Gupta, Sanjeev Kumar, and Sangam Dixit. "Progress and application of nanofluids in solar collectors: An overview of recent advances." Materials Today: Proceedings 44 (2021): 250-259. https://doi.org/10.1016/j.matpr.2020.09.462 DOI: https://doi.org/10.1016/j.matpr.2020.09.462
Muneeshwaran, M., G. Srinivasan, P. Muthukumar, and Chi-Chuan Wang. "Role of hybrid-nanofluid in heat transfer enhancement–A review." International Communications in Heat and Mass Transfer 125 (2021): 105341. https://doi.org/10.1016/j.icheatmasstransfer.2021.105341 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2021.105341
Gholizadeh, Majid, Mehdi Jamei, Iman Ahmadianfar, and Rashid Pourrajab. "Prediction of nanofluids viscosity using random forest (RF) approach." Chemometrics and Intelligent Laboratory Systems 201 (2020): 104010. https://doi.org/10.1016/j.chemolab.2020.104010 DOI: https://doi.org/10.1016/j.chemolab.2020.104010
Rubbi, Fazlay, Likhan Das, Khairul Habib, Navid Aslfattahi, R. Saidur, and Md Tauhidur Rahman. "State-of-the-art review on water-based nanofluids for low temperature solar thermal collector application." Solar Energy Materials and Solar Cells 230 (2021): 111220. https://doi.org/10.1016/j.solmat.2021.111220 DOI: https://doi.org/10.1016/j.solmat.2021.111220
Gad, M. S., Mokhtar Said, and Amir Y. Hassan. "Effect of different nanofluids on performance analysis of flat plate solar collector." Journal of Dispersion Science and Technology 42, no. 12 (2021): 1867-1878. https://doi.org/10.1080/01932691.2020.1845959 DOI: https://doi.org/10.1080/01932691.2020.1845959
Kumar, Rishikesh, and M. A. Hassan. "Biosurfactant Augmented Characterization and Heat Transport Assessment of MWCNT-H2O Nanofluid in Solar Collector." International Journal of Thermophysics 45, no. 5 (2024): 66. https://doi.org/10.1007/s10765-024-03364-w DOI: https://doi.org/10.1007/s10765-024-03364-w
Kumar, Vikas, Ashutosh Pare, Arun Kumar Tiwari, and Subrata Kumar Ghosh. "Efficacy evaluation of oxide-MWCNT water hybrid nanofluids: an experimental and artificial neural network approach." Colloids and Surfaces A: Physicochemical and Engineering Aspects 620 (2021): 126562. https://doi.org/10.1016/j.colsurfa.2021.126562 DOI: https://doi.org/10.1016/j.colsurfa.2021.126562
Tiwari, Arun Kumar, Naimish S. Pandya, Zafar Said, Hakan F. Öztop, and Nidal Abu-Hamdeh. "4S consideration (synthesis, sonication, surfactant, stability) for the thermal conductivity of CeO2 with MWCNT and water-based hybrid nanofluid: An experimental assessment." Colloids and Surfaces A: Physicochemical and Engineering Aspects 610 (2021): 125918. https://doi.org/10.1016/j.colsurfa.2020.125918 DOI: https://doi.org/10.1016/j.colsurfa.2020.125918
Gupta, Sanjeev Kumar, and Abhishek Saxena. "A progressive review of hybrid nanofluid utilization in solar parabolic trough collector." Materials Today: Proceedings (2023). https://doi.org/10.1016/j.matpr.2023.06.204 DOI: https://doi.org/10.1016/j.matpr.2023.06.204
Ali, Naser, Ammar M. Bahman, Nawaf F. Aljuwayhel, Shikha A. Ebrahim, Sayantan Mukherjee, and Ali Alsayegh. "Carbon-based nanofluids and their advances towards heat transfer applications—a review." Nanomaterials 11, no. 6 (2021): 1628. https://doi.org/10.3390/nano11061628 DOI: https://doi.org/10.3390/nano11061628
Pak, Bock Choon, and Young I. Cho. "Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles." Experimental Heat Transfer an International Journal 11, no. 2 (1998): 151-170. https://doi.org/10.1080/08916159808946559 DOI: https://doi.org/10.1080/08916159808946559
Wagner, Wolfgang, and Andreas Pruß. "The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use." Journal of physical and chemical reference data 31, no. 2 (2002): 387-535.https://dx.doi.org/10.1063/1.1461829 DOI: https://doi.org/10.1063/1.1461829
Michael Joseph Stalin, P., T. V. Arjunan, M. M. Matheswaran, H. Dolli, and N. J. J. O. T. A. Sadanandam. "Energy, economic and environmental investigation of a flat plate solar collector with CeO 2/water nanofluid." Journal of Thermal Analysis and Calorimetry 139 (2020): 3219-3233. http://dx.doi.org/10.1007/s10973-019-08670-2 DOI: https://doi.org/10.1007/s10973-019-08670-2
Ilyas, Suhaib Umer, Rajashekhar Pendyala, and Marneni Narahari. "Stability and thermal analysis of MWCNT-thermal oil-based nanofluids." Colloids and Surfaces A: Physicochemical and Engineering Aspects 527 (2017): 11-22. https://doi.org/10.1016/j.colsurfa.2017.05.004 DOI: https://doi.org/10.1016/j.colsurfa.2017.05.004
Sharma, Rajneesh, Prashant Chauhan, Amit Kumar Sharma, Atul Katiyar, Hari Kumar Singh, Moti Lal Rinawa, and P. Manoj Kumar. "Characterization of ZnO/nanofluid for improving heat transfer in thermal systems." Materials Today: Proceedings 62 (2022): 1904-1908. https://doi.org/10.1016/j.matpr.2022.01.107 DOI: https://doi.org/10.1016/j.matpr.2022.01.107
Gupta, Sanjeev Kumar, Shubham Gupta, and Rajeev Singh. "A comprehensive review of energy saving in shell & tube heat exchanger by utilization of nanofluids." Materials Today: Proceedings 50 (2022): 1818-1826. https://doi.org/10.1016/j.matpr.2021.09.212 DOI: https://doi.org/10.1016/j.matpr.2021.09.212
Duffie, John A., William A. Beckman, and Nathan Blair. Solar engineering of thermal processes, photovoltaics and wind. John Wiley & Sons, 2020. https://doi.org/10.1002/9781118671603.ch6 DOI: https://doi.org/10.1002/9781118671603.ch6
Klein G., Schnelle K., and Holzmueller W. "Pharmacodynamics of the beta1-adrenoceptor agonist prenalterol compared to dobutamine." Naunyn-Schmiedeberg's Archives of Pharmacology 308, (1979): 79
Yousefi, Tooraj, Farzad Veysi, Ehsan Shojaeizadeh, and Sirus Zinadini. "An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors." Renewable Energy 39, no. 1 (2012): 293-298. https://doi.org/10.1016/j.renene.2011.08.056 DOI: https://doi.org/10.1016/j.renene.2011.08.056
Standard, A. S. H. R. A. E. "Methods of testing to determine the thermal performance of solar collectors." American Society of Heating (1977): 93-77.
Rockenbaugh, Caleb, Jesse Dean, David Lovullo, Lars Lisell, Greg Barker, Ed Hanckock, and Paul Norton. High performance flat plate solar thermal collector evaluation. No. NREL/TP-7A40-66215. National Renewable Energy Lab.(NREL), Golden, CO (United States), 2016. https://doi.org/10.2172/1326887 DOI: https://doi.org/10.2172/1326887
Lari, Muhammad O., and Ahmet Z. Sahin. "Design, performance and economic analysis of a nanofluid-based photovoltaic/thermal system for residential applications." Energy conversion and management 149 (2017): 467-484. https://doi.org/10.1016/j.enconman.2017.07.045 DOI: https://doi.org/10.1016/j.enconman.2017.07.045
Bünz, Jonas, Tobias Brink, Koichi Tsuchiya, Fanqiang Meng, Gerhard Wilde, and Karsten Albe. "Low temperature heat capacity of a severely deformed metallic glass." Physical Review Letters 112, no. 13 (2014): 135501. https://doi.org/10.1103/PhysRevLett.112.135501 DOI: https://doi.org/10.1103/PhysRevLett.112.135501
Zhang, Liang, Pingping Qu, Yuyan Jing, Xinyue Yao, Wenjie Wang, and Cheng Shi. "Mechanism analysis of the influence of nanoparticles on the convective heat transfer coefficient of traditional fluids." Materials Today Communications 32 (2022): 104091. https://doi.org/10.1016/j.mtcomm.2022.104091 DOI: https://doi.org/10.1016/j.mtcomm.2022.104091
Gupta, Sanjeev Kumar, and Aasheesh Sharma. "A brief review of nanofluids utilization in heat transfer devices for energy saving." Materials Today: Proceedings (2023). https://doi.org/10.1016/j.matpr.2023.03.364 DOI: https://doi.org/10.1016/j.matpr.2023.03.364
Zhou, Liqun, Yiping Wang, and Qunwu Huang. "Parametric analysis on the performance of flat plate collector with transparent insulation material." Energy 174 (2019): 534-542. https://doi.org/10.1016/j.energy.2019.02.168 DOI: https://doi.org/10.1016/j.energy.2019.02.168
Khunphakdee, Phuris, Ratchanon Piemjaiswang, and Benjapon Chalermsinsuwan. "Assessing Turbulent Models for Flow Accelerated Corrosion Prediction in a 90-Degree Bend." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 119, no. 1 (2024): 28-41. https://doi.org/10.37934/arfmts.119.1.2841 DOI: https://doi.org/10.37934/arfmts.119.1.2841