Numerical Investigation on Photovoltaic Thermal Panel Using Various Nanofluids Concentrations
DOI:
https://doi.org/10.37934/cfdl.17.4.6688Keywords:
Photovoltaic Thermal System (PVT), Computational Fluid Dynamic (CFD), Nanofluid, Thermal Efficiency, Electrical EfficiencyAbstract
Increasing the efficiency of solar panels is crucial for effective use of renewables. The present numerical study deals with improving the performance of a PVT system with nanofluid using CFD FLUENT software. ZnO-water and SiO2-water nanofluids are investigated and correlation are established between the PVT efficiency and various nanofluid volumetric concentrations ranging from 1% to 10%. Validation of the present results is verified by comparison with experimental data. Comprehensive research is conducted to evaluate the correlation between the thermophysical properties of nanofluids such as density, thermal conductivity, specific heat capacity and dynamic viscosity. The results demonstrate that the overall efficiency of the ZnO-water nanofluid and -water nanofluid increases by 0.44% and 0.24%, respectively, as the volumetric concentration of the nanofluid rises from 1% to 10%. The ZnO-water nanofluid reveals enhanced thermal and electrical efficiency compared to the -water nanofluid due to its superior thermal conductivity and enhanced heat transfer capabilities along the absorber tube. The ZnO-water nanofluid exhibits a greater heat transfer coefficient, thereby facilitating the cooling mechanism of the PV panel and reducing the PV cell temperature, hence enhancing power generation.
Downloads
References
Abdullah, Amira Lateef, Suhaimi Misha, Noreffendy Tamaldin, Mohd Afzanizam Mohd Rosli, and Fadhil Abdulameer Sachit. "A Review: Parameters affecting the PVT collector performance on the thermal, electrical, and overall efficiency of PVT system." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 60, no. 2 (2019): 191-232.
Sachit, Fadhil Abdulameer, Mohd Afzanizam Mohd Rosli, Noreffendy Tamaldin, Suhaimi Misha, and Amira Lateef Abdullah. "Effect of a new absorber design on the performance of PV/T collector: Numerical comparative study." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 71, no. 1 (2020): 60-71. https://doi.org/10.37934/arfmts.71.1.6071 DOI: https://doi.org/10.37934/arfmts.71.1.6071
Rosli, Mohd Afzanizam Mohd, Danial Shafiq Mohd Zaki, Fatiha Abdul Rahman, Suhaila Sepeai, Nurfaizey Abdul Hamid, and Muhammad Zaid Nawam. "F-Chart Method for Design Domestic Hot Water Heating Systemin Ayer Keroh Melaka." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 56, no. 1 (2019): 59-67.
Yazdanifard, Farideh, Ehsan Ebrahimnia-Bajestan, and Mehran Ameri. "Investigating the performance of a water-based photovoltaic/thermal (PV/T) collector in laminar and turbulent flow regime." Renewable Energy 99 (2016): 295-306. https://doi.org/10.1016/j.renene.2016.07.004 DOI: https://doi.org/10.1016/j.renene.2016.07.004
Choi, S. U. S., and J. A. Eastman. "Enhancing Thermal Conductivity of Fluids with Nanoparticles; United States." Department of Energy: Washington, DC, USA (1995).
Etminan-Farooji, Vahid, Ehsan Ebrahimnia-Bajestan, Hamid Niazmand, and Somchai Wongwises. "Unconfined laminar nanofluid flow and heat transfer around a square cylinder." International Journal of Heat and Mass Transfer 55, no. 5-6 (2012): 1475-1485. https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.030 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.030
Sardarabadi, Mohammad, Mohammad Passandideh-Fard, and Saeed Zeinali Heris. "Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units)." Energy 66 (2014): 264-272. https://doi.org/10.1016/j.energy.2014.01.102 DOI: https://doi.org/10.1016/j.energy.2014.01.102
Radwan, Ali, Mahmoud Ahmed, and Shinichi Ookawara. "Performance enhancement of concentrated photovoltaic systems using a microchannel heat sink with nanofluids." Energy Conversion and Management 119 (2016): 289-303. https://doi.org/10.1016/j.enconman.2016.04.045 DOI: https://doi.org/10.1016/j.enconman.2016.04.045
Said, Zid, Mohammad H. Sajid, Mohammad A. Alim, Rahman Saidur, and Nasrudin A. Rahim. "Experimental investigation of the thermophysical properties of AL2O3-nanofluid and its effect on a flat plate solar collector." International communications in heat and mass transfer 48 (2013): 99-107. https://doi.org/10.1016/j.icheatmasstransfer.2013.09.005 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2013.09.005
Al-Waeli, Ali HA, K. Sopian, Miqdam T. Chaichan, Hussein A. Kazem, Husam Abdulrasool Hasan, and Ali Najah Al-Shamani. "An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system." Energy Conversion and Management 142 (2017): 547-558. https://doi.org/10.1016/j.enconman.2017.03.076 DOI: https://doi.org/10.1016/j.enconman.2017.03.076
Teng, Tun-Ping, Yi-Hsuan Hung, Tun-Chien Teng, Huai-En Mo, and How-Gao Hsu. "The effect of alumina/water nanofluid particle size on thermal conductivity." Applied Thermal Engineering 30, no. 14-15 (2010): 2213-2218. https://doi.org/10.1016/j.applthermaleng.2010.05.036 DOI: https://doi.org/10.1016/j.applthermaleng.2010.05.036
Khanjari, Y., F. Pourfayaz, and A. B. Kasaeian. "Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system." Energy Conversion and Management 122 (2016): 263-278. https://doi.org/10.1016/j.enconman.2016.05.083 DOI: https://doi.org/10.1016/j.enconman.2016.05.083
Jia, Yuting, Fengming Ran, Chuqiao Zhu, and Guiyin Fang. "Numerical analysis of photovoltaic-thermal collector using nanofluid as a coolant." Solar Energy 196 (2020): 625-636. https://doi.org/10.1016/j.solener.2019.12.069 DOI: https://doi.org/10.1016/j.solener.2019.12.069
Hosseinzadeh, Mohammad, Ali Salari, Mohammad Sardarabadi, and Mohammad Passandideh-Fard. "Optimization and parametric analysis of a nanofluid based photovoltaic thermal system: 3D numerical model with experimental validation." Energy Conversion and Management 160 (2018): 93-108. https://doi.org/10.1016/j.enconman.2018.01.006 DOI: https://doi.org/10.1016/j.enconman.2018.01.006
Oztop, Hakan F., A. Z. Sahin, Hakan Coşanay, and I. H. Sahin. "Three-dimensional computational analysis of performance improvement in a novel designed solar photovoltaic/thermal system by using hybrid nanofluids." Renewable Energy 210 (2023): 832-841. https://doi.org/10.1016/j.renene.2023.04.115 DOI: https://doi.org/10.1016/j.renene.2023.04.115
Khan, Ajiv Alam, Mohd Danish, Saeed Rubaiee, and Syed Mohd Yahya. "Insight into the investigation of Fe3O4/SiO2 nanoparticles suspended aqueous nanofluids in hybrid photovoltaic/thermal system." Cleaner Engineering and Technology 11 (2022): 100572. https://doi.org/10.1016/j.clet.2022.100572 DOI: https://doi.org/10.1016/j.clet.2022.100572
Rosli, Mohd Afzanizam Mohd, Cheong Jing Rou, Nortazi Sanusi, Siti Nur Dini Noordin Saleem, Nurfarhana Salimen, Safarudin Gazali Herawan, Norli Abdullah, Avita Ayu Permanasari, Zainal Arifin, and Faridah Hussain. "Numerical investigation on using MWCNT/water nanofluids in photovoltaic thermal system (PVT)." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 99, no. 1 (2022): 35-57. https://doi.org/10.37934/arfmts.99.1.3557 DOI: https://doi.org/10.37934/arfmts.99.1.3557
Hasan, Husam Abdulrasool, Ali Arif Hatem, Lamiaa Abdulredh Abd, Azher M. Abed, and Kamaruzzaman Sopian. "Numerical investigation of nanofluids comprising different metal oxide nanoparticles for cooling concentration photovoltaic thermal CPVT." Cleaner Engineering and Technology 10 (2022): 100543. https://doi.org/10.1016/j.clet.2022.100543
Filipović, Petar, Damir Dović, Ivan Horvat, and Borjan Ranilović. "Evaluation of a novel polymer solar collector using numerical and experimental methods." Energy 284 (2023): 128558. https://doi.org/10.1016/j.energy.2023.128558 DOI: https://doi.org/10.1016/j.energy.2023.128558
Rosli, Mohd Afzanizam Mohd, Irfan Alias Farhan Latif, Muhammad Zaid Nawam, Mohd Noor Asril Saadun, Hasila Jarimi, Mohd Khairul Anuar Sharif, and Sulaiman Ali. "A simulation study on temperature uniformity of photovoltaic thermal using computational fluid dynamics." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 82, no. 1 (2021): 21-38. https://doi.org/10.37934/arfmts.82.1.2138
Rosli, Mohd Afzanizam Mohd, Irfan Alias Farhan Latif, Muhammad Zaid Nawam, Mohd Noor Asril Saadun, Hasila Jarimi, Mohd Khairul Anuar Sharif, and Sulaiman Ali. "A simulation study on temperature uniformity of photovoltaic thermal using computational fluid dynamics." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 82, no. 1 (2021): 21-38. https://doi.org/10.37934/arfmts.91.2.106119 DOI: https://doi.org/10.37934/arfmts.82.1.2138
Aste, Niccolò, Claudio Del Pero, and Fabrizio Leonforte. "Thermal-electrical optimization of the configuration a liquid PVT collector." Energy Procedia 30 (2012): 1-7. https://doi.org/10.1016/j.egypro.2012.11.002 DOI: https://doi.org/10.1016/j.egypro.2012.11.002
Kell, George S. "Density, thermal expansivity, and compressibility of liquid water from 0. deg. to 150. deg.. Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale." Journal of Chemical and Engineering data 20, no. 1 (1975): 97-105. https://doi.org/10.1021/je60064a005 DOI: https://doi.org/10.1021/je60064a005
Hasan, Husam Abdulrasool, Ali Arif Hatem, Lamiaa Abdulredh Abd, Azher M. Abed, and Kamaruzzaman Sopian. "Numerical investigation of nanofluids comprising different metal oxide nanoparticles for cooling concentration photovoltaic thermal CPVT." Cleaner Engineering and Technology 10 (2022): 100543. https://doi.org/10.1016/j.clet.2022.100543 DOI: https://doi.org/10.1016/j.clet.2022.100543
Mishra, Purna Chandra, Sayantan Mukherjee, Santosh Kumar Nayak, and Arabind Panda. "A brief review on viscosity of nanofluids." International nano letters 4 (2014): 109-120. https://doi.org/10.1007/s40089-014-0126-3
Rosli, Mohd Afzanizam Mohd, Yew Wai Loon, Muhammad Zaid Nawam, Suhaimi Misha, Aiman Roslizar, Faridah Hussain, Nurfaizey Abdul Hamid, Zainal Arifin, and Safarudin Gazali Herawan. "Validation Study of Photovoltaic Thermal Nanofluid Based Coolant Using Computational Fluid Dynamics Approach." CFD Letters 13, no. 3 (2021): 58-71. https://doi.org/10.37934/cfdl.13.3.5871 DOI: https://doi.org/10.37934/cfdl.13.3.5871
Mishra, Purna Chandra, Sayantan Mukherjee, Santosh Kumar Nayak, and Arabind Panda. "A brief review on viscosity of nanofluids." International nano letters 4 (2014): 109-120. https://doi.org/10.1007/s40089-014-0126-3 DOI: https://doi.org/10.1007/s40089-014-0126-3
Xuan, Yimin, Qiang Li, and Weifeng Hu. "Aggregation structure and thermal conductivity of nanofluids." AIChE Journal 49, no. 4 (2003): 1038-1043. https://doi.org/10.1002/aic.690490420 DOI: https://doi.org/10.1002/aic.690490420
Seyf, Hamid Reza, and Behrang Nikaaein. "Analysis of Brownian motion and particle size effects on the thermal behavior and cooling performance of microchannel heat sinks." International Journal of Thermal Sciences 58 (2012): 36-44. https://doi.org/10.1016/j.ijthermalsci.2012.02.022 DOI: https://doi.org/10.1016/j.ijthermalsci.2012.02.022
Kakaç, Sadik, and Anchasa Pramuanjaroenkij. "Review of convective heat transfer enhancement with nanofluids." International journal of heat and mass transfer 52, no. 13-14 (2009): 3187-3196. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006
Katz, Aaron, and Venkateswaran Sankaran. "Mesh quality effects on the accuracy of CFD solutions on unstructured meshes." Journal of Computational Physics 230, no. 20 (2011): 7670-7686. https://doi.org/10.1016/j.jcp.2011.06.023 DOI: https://doi.org/10.1016/j.jcp.2011.06.023