Evaluation of Ventilation Strategies to Mitigate Airborne Infection Risk in a Dental School: A Three-Dimensional CFD Analysis of Airflow Patterns and Ventilation Efficiency
DOI:
https://doi.org/10.37934/cfdl.17.3.1735Keywords:
Ventilation, Airborne Infections, Dental school, Age of air, Computational fluid dynamics, AirflowAbstract
Infection prevention and control is a crucial element in providing a safe environment for dental clinics and reducing airborne infections risks during dental procedures. In response to the prevailing COVID-19 situations, the clinical space in the dental school was operated with ventilation strategies, increasing air exchanges and incorporating supply and return air arrangement based on seating positions. This study evaluated airflow patterns to examine personal exposure to airborne infection risk under these strategies. The three-dimensional computational fluid dynamics technique using computational fluid dynamics (CFD) analysis was performed in 50 multi-units of the dental school of the university in Bangkok, Thailand. The results revealed substantial improvements in indoor ventilation. Improvement of airflow patterns and directions surpassed conventional design of the pre-existing building’s system and helped reduce airborne contaminant concentrations. The further discussion of occupant-based design in dental schools is needed to optimize ventilation systems and engineering controls concerning indoor airborne infections.
Downloads
References
World Health Organization. A timeline of WHO's COVID-19 Response in the WHO European Region: a living document (version 3.0, from 31 December 2019 to 31 December 2021). No. WHO/EURO: 2022-1772-41523-63024. World Health Organization. Regional Office for Europe, 2022.
Poydenot, Florian, Ismael Abdourahamane, Elsa Caplain, Samuel Der, Jacques Haiech, Antoine Jallon, Inés Khoutami, Amir Loucif, Emil Marinov, and Bruno Andreotti. "Risk assessment for long-and short-range airborne transmission of SARS-CoV-2, indoors and outdoors." PNAS nexus 1, no. 5 (2022): pgac223. https://doi:10.1093/pnasnexus/pgac223 DOI: https://doi.org/10.1093/pnasnexus/pgac223
World Health Organization, ( 2020. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected: interim guidance, 13 March 2020. No. WHO/2019-nCoV/clinical/2020.4. World Health Organization, 2020.
Lewis, Dyani. "Is the coronavirus airborne? Experts can’t agree." Nature 580, no. 7802 (2020): 175. DOI: https://doi.org/10.1038/d41586-020-00974-w
Tang, Julian W., William P. Bahnfleth, Philomena M. Bluyssen, Giorgio Buonanno, Jose L. Jimenez, Jarek Kurnitski, Yuguo Li et al. "Dismantling myths on the airborne transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)." Journal of Hospital Infection 110 (2021): 89-96. https://doi.org/10.1016/J.JHIN.2020.12.022 DOI: https://doi.org/10.1016/j.jhin.2020.12.022
Goriuc, Ancuta, Darius Sandu, Monica Tatarciuc, and Ionut Luchian. "The impact of the COVID-19 pandemic on dentistry and dental education: a narrative review." International journal of environmental research and public health 19, no. 5 (2022): 2537. https://doi.org/10.3390/ijerph19052537 DOI: https://doi.org/10.3390/ijerph19052537
Chaloeytoy, Kittiwoot, Vorapat Inkarojrit, and Anothai Thanachareonkit. "Electricity consumption in higher education buildings in Thailand during the COVID-19 pandemic." Buildings 12, no. 10 (2022): 1532. https://doi.org/10.3390/buildings12101532 DOI: https://doi.org/10.3390/buildings12101532
Yang, Bin, Arsen K. Melikov, Alan Kabanshi, Chen Zhang, Fred S. Bauman, Guangyu Cao, Hazim Awbi et al. "A review of advanced air distribution methods-theory, practice, limitations and solutions." Energy and Buildings 202 (2019): 109359. https://doi.org/10.1016/j.enbuild.2019.109359 DOI: https://doi.org/10.1016/j.enbuild.2019.109359
Allen, Joseph, and Linsey Marr. "Re-thinking the potential for airborne transmission of SARS-CoV-2." (2020). https://doi.org/10.20944/preprints202005.0126 DOI: https://doi.org/10.20944/preprints202005.0126.v1
Buonanno, Giorgio, Luca Stabile, and Lidia Morawska. "Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment." Environment international 141 (2020): 105794. https://doi.org/10.1016/j.envint.2020.105794 DOI: https://doi.org/10.1016/j.envint.2020.105794
Jones, Benjamin, Patrick Sharpe, Christopher Iddon, E. Abigail Hathway, Catherine J. Noakes, and Shaun Fitzgerald. "Modelling uncertainty in the relative risk of exposure to the SARS-CoV-2 virus by airborne aerosol transmission in well mixed indoor air." Building and environment 191 (2021): 107617. https://doi.org/10.1016/j.buildenv.2021.107617 DOI: https://doi.org/10.1016/j.buildenv.2021.107617
Schoen, L. J., M. J. Hodgson, W. F. McCoy, S. L. Miller, Y. Li, R. N. Olmsted, C. Sekhar, A. S. Parsons, and P. Wargocki. "ASHRAE position document on airborne infectious diseases." Atlanta, GA: ASHRAE (2014).
ASHRAE. “ Ventilation of Health Care Facilities, American Society of Heating, Refrigerating and Air-Conditioning Engineers.” ANSI/ASHRAE/ASHE Standard 170-2017. Atlanta, GA, USA. (2019).
Knibbs, Luke D., Lidia Morawska, Scott C. Bell, and Piotr Grzybowski. "Room ventilation and the risk of airborne infection transmission in 3 health care settings within a large teaching hospital." American journal of infection control 39, no. 10 (2011): 866-872. https://doi.org/10.1016/j.ajic.2011.02.014 DOI: https://doi.org/10.1016/j.ajic.2011.02.014
Memarzadeh, Farhad, and Weiran Xu. "Role of air changes per hour (ACH) in possible transmission of airborne infections." In Building simulation, vol. 5, no. 1, pp. 15-28. Berlin/Heidelberg: Springer Berlin Heidelberg, 2012. https://doi.org/10.1007/s12273-011-0053-4 DOI: https://doi.org/10.1007/s12273-011-0053-4
difficile Update, C. "Guidelines for Environmental Infection Control in Health-Care Facilities."
England, N. H. S. "HTM 03-01 Specialised ventilation for healthcare buildings." (2021).
ASHRAE. "ASHRAE Epidemic Task Force. American Society of Heating, Refrigerating and Air-Conditioning Engineers.” ASHERE. (2021 OCT 21).
Dental Association of Thailand. Ventilation in dental setting (in Thai).
Yu, H. C., Kwok Wai Mui, Ling Tim Wong, and H. S. Chu. "Ventilation of general hospital wards for mitigating infection risks of three kinds of viruses including Middle East respiratory syndrome coronavirus." Indoor and Built Environment 26, no. 4 (2017): 514-527. https://doi.org/10.1177/1420326X16631596 DOI: https://doi.org/10.1177/1420326X16631596
Verma, Tikendra N., Arvind Kumar Sahu and Shobha Sinha. “Numerical simulation of air pollution control in hospital, in: N. Sharma, A. Agarwal, P. Eastwood, T. Gupta, A. Singh (Eds.), Air Pollution and Control. Energy, Environment, and Sustainability.” Springer. Singapore. (2018). https://doi.org/10.1007/978-981-10-7185-0_11 DOI: https://doi.org/10.1007/978-981-10-7185-0_11
Chow, T. T., and X. Y. Yang. "Ventilation performance in the operating theatre against airborne infection: numerical study on an ultra-clean system." Journal of Hospital Infection 59, no. 2 (2005): 138-147. https://doi.org/10.1016/j.jhin.2004.09.006 DOI: https://doi.org/10.1016/j.jhin.2004.09.006
Romano, Francesco, Luca Marocco, Jan Gustén, and Cesare M. Joppolo. "Numerical and experimental analysis of airborne particles control in an operating theater." Building and Environment 89 (2015): 369-379. https://doi.org/10.1016/j.buildenv.2015.03.003 DOI: https://doi.org/10.1016/j.buildenv.2015.03.003
Thatiparti, Deepthi Sharan, Urmila Ghia, and Kenneth R. Mead. "Computational fluid dynamics study on the influence of an alternate ventilation configuration on the possible flow path of infectious cough aerosols in a mock airborne infection isolation room." Science and technology for the built environment 23, no. 2 (2017): 355-366. https://doi.org/10.1080/23744731.2016.1222212 DOI: https://doi.org/10.1080/23744731.2016.1222212
Mousavi, Ehsan S., and Kevin R. Grosskopf. "Ventilation rates and airflow pathways in patient rooms: a case study of bioaerosol containment and removal." Annals of Occupational Hygiene 59, no. 9 (2015): 1190-1199. https://doi.org/10.1093/annhyg/mev048 DOI: https://doi.org/10.1093/annhyg/mev048
Villafruela, José Manuel, Inés Olmedo, Félix A. Berlanga, and Manuel Ruiz de Adana. "Assessment of displacement ventilation systems in airborne infection risk in hospital rooms." PLoS One 14, no. 1 (2019): e0211390. https://doi.org/10.1371/journal.pone.0211390
Mousavi, E. S. "Toward an energy efficient healthcare environment: a case study of hospital corridor design." International Journal of Environmental Science and Technology 16, no. 12 (2019): 7633-7642.
https://doi.org/10.1007/s13762-019-02386-4 DOI: https://doi.org/10.1007/s13762-019-02386-4
Meiss, Alberto, Jesús Feijó-Muñoz, and Miguel A. García-Fuentes. "Age-of-the-air in rooms according to the environmental condition of temperature: A case study." Energy and buildings 67 (2013): 88-96. https://doi.org/10.1016/j.enbuild.2013.08.016 DOI: https://doi.org/10.1016/j.enbuild.2013.08.016
Villafruela, José Manuel, Inés Olmedo, Félix A. Berlanga, and Manuel Ruiz de Adana. "Assessment of displacement ventilation systems in airborne infection risk in hospital rooms." PLoS One 14, no. 1 (2019): e0211390. https://doi.org/10.1371/journal.pone.0211390 DOI: https://doi.org/10.1371/journal.pone.0211390
King, M‐F., Catherine J. Noakes, and P. Andrew Sleigh. "Modeling environmental contamination in hospital single‐and four‐bed rooms." Indoor Air 25, no. 6 (2015): 694-707. https://doi.org/10.1111/ina.12186 DOI: https://doi.org/10.1111/ina.12186
Ho, Son H., Luis Rosario, and Muhammad M. Rahman. "Three-dimensional analysis for hospital operating room thermal comfort and contaminant removal." Applied Thermal Engineering 29, no. 10 (2009): 2080-2092. https://doi.org/10.1016/j.applthermaleng.2008.10.016 DOI: https://doi.org/10.1016/j.applthermaleng.2008.10.016
Yang, Caiqing, Xudong Yang, Tengfang Xu, Luchun Sun, and Wei Gong. "Optimization of bathroom ventilation design for an ISO Class 5 clean ward." In Building Simulation, vol. 2, pp. 133-142. Springer Berlin Heidelberg, 2009. https://doi.org/10.1007/s12273-009-9310-1 DOI: https://doi.org/10.1007/s12273-009-9310-1
Mohammadi Nafchi, Ali, Vincent Blouin, Nigel Kaye, Andrew Metcalf, Katie Van Valkinburgh, and Ehsan Mousavi. "Room HVAC influences on the removal of airborne particulate matter: implications for school reopening during the COVID-19 pandemic." Energies 14, no. 22 (2021): 7463. https://doi.org/10.3390/en14227463 DOI: https://doi.org/10.3390/en14227463
Azimi, Parham, and Brent Stephens. "HVAC filtration for controlling infectious airborne disease transmission in indoor environments: Predicting risk reductions and operational costs." Building and environment 70 (2013): 150-160. https://doi.org/10.1016/j.buildenv.2013.08.025 DOI: https://doi.org/10.1016/j.buildenv.2013.08.025
Shrestha, Prateek, Jason W. DeGraw, Mingkan Zhang, and Xiaobing Liu. "Multizonal modeling of SARS-CoV-2 aerosol dispersion in a virtual office building." Building and Environment 206 (2021): 108347. https://doi.org/10.1016/j.buildenv.2021.108347 DOI: https://doi.org/10.1016/j.buildenv.2021.108347
Anghel, Larisa, Cătălin-George Popovici, Cristian Stătescu, Radu Sascău, Marina Verdeș, Vasilică Ciocan, Ionela-Lăcrămioara Șerban, Minela Aida Mărănducă, Sebastian-Valeriu Hudișteanu, and Florin-Emilian Țurcanu. "Impact of HVAC-systems on the dispersion of infectious aerosols in a cardiac intensive care unit." International journal of environmental research and public health 17, no. 18 (2020): 6582. https://doi.org/10.3390/ijerph17186582 DOI: https://doi.org/10.3390/ijerph17186582
Izadyar, Nima, and Wendy Miller. "Ventilation strategies and design impacts on indoor airborne transmission: A review." Building and Environment 218 (2022): 109158. https://doi.10.1016/j.buildenv.2022.109158 DOI: https://doi.org/10.1016/j.buildenv.2022.109158
Ren, Chen, Chang Xi, Junqi Wang, Zhuangbo Feng, Fuzhan Nasiri, Shi-Jie Cao, and Fariborz Haghighat. "Mitigating COVID-19 infection disease transmission in indoor environment using physical barriers." Sustainable cities and society 74 (2021): 103175. https://doi.org/10.1016/j.scs.2021.103175 DOI: https://doi.org/10.1016/j.scs.2021.103175
Mirzaie, Mahshid, Esmail Lakzian, Afrasyab Khan, Majid Ebrahimi Warkiani, Omid Mahian, and Goodarz Ahmadi. "COVID-19 spread in a classroom equipped with partition–A CFD approach." Journal of Hazardous Materials 420 (2021): 126587. https://doi.org/10.1016/j.jhazmat.2021.126587 DOI: https://doi.org/10.1016/j.jhazmat.2021.126587
Offermann, Francis J., Aaron Eagan, Aidan C. Offermann, Shobha S. Subhash, Shelly L. Miller, and Lewis J. Radonovich. "Potential airborne pathogen transmission in a hospital with and without surge control ventilation system modifications." Building and environment 106 (2016): 175-180. https://doi.org/10.1016/j.buildenv.2016.06.029 DOI: https://doi.org/10.1016/j.buildenv.2016.06.029
Bluyssen, Philomena M., Marco Ortiz, and Dadi Zhang. "The effect of a mobile HEPA filter system on ‘infectious’ aerosols, sound and air velocity in the SenseLab." Building and environment 188 (2021): 107475. https://doi.org/10.1016/j.buildenv.2020.107475 DOI: https://doi.org/10.1016/j.buildenv.2020.107475
Xu, Chunwen, Peter V. Nielsen, Li Liu, Rasmus L. Jensen, and Guangcai Gong. "Impacts of airflow interactions with thermal boundary layer on performance of personalized ventilation." Building and Environment 135 (2018): 31-41. https://doi.org/10.1016/j.buildenv.2018.02.048 DOI: https://doi.org/10.1016/j.buildenv.2018.02.048
Zhai, Zhiqiang John, and Ian Dominic Metzger. "Insights on critical parameters and conditions for personalized ventilation." Sustainable Cities and Society 48 (2019): 101584. https://doi.org/10.1016/j.scs.2019.101584 DOI: https://doi.org/10.1016/j.scs.2019.101584
Yang, J., S. C. Sekhar, K. W. D. Cheong, and B. Raphael. "Performance evaluation of a novel personalized ventilation–personalized exhaust system for airborne infection control." Indoor Air 25, no. 2 (2015): 176-187. https://doi.org/10.1111/ina.12127 DOI: https://doi.org/10.1111/ina.12127
Tham, K. W., and J. Pantelic. "Cough released airborne infection disease transmission control with ventilation at various infector-susceptible distances." (2011).
Ershkov, Sergey V., Evgeniy Yu Prosviryakov, Natalya V. Burmasheva, and Victor Christianto. "Towards understanding the algorithms for solving the Navier–Stokes equations." Fluid Dynamics Research 53, no. 4 (2021): 044501. https://doi.org/10.1088/1873-7005/ac10f0 DOI: https://doi.org/10.1088/1873-7005/ac10f0
Li, Y., and Peter V. Nielsen. "CFD and ventilation research." Indoor air 21, no. 6 (2011): 442-453. https://doi.org/10.1111/j.1600-0668.2011.00723.x DOI: https://doi.org/10.1111/j.1600-0668.2011.00723.x
Sheikhnejad, Yahya, Reihaneh Aghamolaei, Marzieh Fallahpour, Hamid Motamedi, Mohammad Moshfeghi, Parham A. Mirzaei, and Hadi Bordbar. "Airborne and aerosol pathogen transmission modeling of respiratory events in buildings: An overview of computational fluid dynamics." Sustainable Cities and Society 79 (2022): 103704. https://doi.org/10.1016/j.scs.2022.103704 DOI: https://doi.org/10.1016/j.scs.2022.103704
Peng, Shanbi, Qikun Chen, and Enbin Liu. "The role of computational fluid dynamics tools on investigation of pathogen transmission: Prevention and control." Science of The Total Environment 746 (2020): 142090., https://doi.org/10.1016/j.scitotenv.2020.142090 DOI: https://doi.org/10.1016/j.scitotenv.2020.142090
Tsang, Tsz-Wun, Kwok-Wai Mui, and Ling-Tim Wong. "Computational Fluid Dynamics (CFD) studies on airborne transmission in hospitals: A review on the research approaches and the challenges." Journal of Building Engineering 63 (2023): 105533. https://doi.org/10.1016/j.jobe.2022.105533 DOI: https://doi.org/10.1016/j.jobe.2022.105533
Yam, R., P. L. Yuen, R. Yung, and T. Choy. "Rethinking hospital general ward ventilation design using computational fluid dynamics." Journal of Hospital infection 77, no. 1 (2011): 31-36. https://doi.org/10.1016/j.jhin.2010.08.010 DOI: https://doi.org/10.1016/j.jhin.2010.08.010
Yang, Jeong-Hoon. "CFD analysis of the inhaled-air quality for the inpatients in a four-bed sickroom." Journal of Asian Architecture and Building Engineering 12, no. 1 (2013): 109-116. https://doi.org/10.3130/jaabe.12.109 DOI: https://doi.org/10.3130/jaabe.12.109
Satheesan, Manoj Kumar, Kwok Wai Mui, and Ling Tim Wong. "A numerical study of ventilation strategies for infection risk mitigation in general inpatient wards." In Building simulation, vol. 13, pp. 887-896. Tsinghua University Press, 2020. https://doi.org/10.1007/s12273-020-0623-4 DOI: https://doi.org/10.1007/s12273-020-0623-4
Jo, Seongmin, Jinkwan Hong, Sang-Eun Lee, Moran Ki, Bo Youl Choi, and Minki Sung. "Airflow analysis of Pyeongtaek St Mary's Hospital during hospitalization of the first Middle East respiratory syndrome patient in Korea." Royal Society open science 6, no. 3 (2019): 181164. https://doi.org/10.1098/rsos.181164 DOI: https://doi.org/10.1098/rsos.181164
Hu, Cheng Hu, Takashi Kurabuchi, and Masaaki Ohba. "Numerical study of cross-ventilation using two-equation RANS turbulence models." International Journal of Ventilation 4, no. 2 (2005): 123-132.
Stamou, A., and Ioannis Katsiris. "Verification of a CFD model for indoor airflow and heat transfer." Building and Environment 41, no. 9 (2006): 1171-1181. https://doi.org/10.1016/j.buildenv.2005.06.029 DOI: https://doi.org/10.1016/j.buildenv.2005.06.029
Yang, Li, and Miao Ye. "CFD simulation research on residential indoor air quality." Science of the Total Environment 472 (2014): 1137-1144. http://doi.org/10.1016/j.scitotenv.2013.11.118 DOI: https://doi.org/10.1016/j.scitotenv.2013.11.118
Ning, Mao, Song Mengjie, Chan Mingyin, Pan Dongmei, and Deng Shiming. "Computational fluid dynamics (CFD) modelling of air flow field, mean age of air and CO2 distributions inside a bedroom with different heights of conditioned air supply outlet." Applied energy 164 (2016): 906-915. http://doi.org/10.1016/j.apenergy.2015.10.096 DOI: https://doi.org/10.1016/j.apenergy.2015.10.096
Rooney, C. M., J. McIntyre, L. Ritchie, and M. H. Wilcox. "Evidence review of physical distancing and partition screens to reduce healthcare acquired SARS-CoV-2." Infection Prevention in Practice 3, no. 2 (2021): 100144. https://doi.org/10.1016/j.infpip.2021.100144 DOI: https://doi.org/10.1016/j.infpip.2021.100144
Song, Cong, Guannan Duan, Dengjia Wang, Yanfeng Liu, Hu Du, and Guixia Chen. "Study on the influence of air velocity on human thermal comfort under non-uniform thermal environment." Building and Environment 196 (2021): 107808. https://doi.org/10.1016/j.buildenv.2021.107808 DOI: https://doi.org/10.1016/j.buildenv.2021.107808
Kappenberg-Niţescu, Diana Cristala, Ionut Luchian, Ioana Mârțu, Sorina-Mihaela Solomon, Silvia Mârţu, Liliana Păsărin, Alexandra Mârțu, Ioana-Andreea Sioustis, Ancuța Goriuc, and Monica Tatarciuc. "Periodontal effects of two innovative oral rinsing substances in oncologic patients." Experimental and Therapeutic Medicine 21, no. 1 (2021): 98. https://doi.org/10.3892/etm.2020.9530 DOI: https://doi.org/10.3892/etm.2020.9530
Kwok, Yen Lee Angela, Jan Gralton, and Mary-Louise McLaws. "Face touching: a frequent habit that has implications for hand hygiene." American journal of infection control 43, no. 2 (2015): 112-114. https://doi.org/10.1016/j.ajic.2014.10.015 DOI: https://doi.org/10.1016/j.ajic.2014.10.015
Parikh, Neha, Amity Gardner, Alan L. Myers, Richard Halpin, Julian N. Holland, and Dharini van der Hoeven. "The impact of coronavirus disease 2019 pandemic on dental school assessments–Current status and future perspectives." Journal of Dental Education 87, no. 6 (2023): 825-842. https://doi.org/10.1002/jdd.13190 DOI: https://doi.org/10.1002/jdd.13190
Costa, Eliana Dantas, Danieli Moura Brasil, Gustavo Machado Santaella, Deivi Cascante-Sequeira, Francesco Saverio Ludovichetti, and Deborah Queiroz Freitas. "Impact of COVID-19 pandemic on dental education: perception of professors and students." Odovtos International Journal of Dental Sciences 24, no. 1 (2022): 122-133. https://doi.org/10.15517/IJDS.2021.46567 DOI: https://doi.org/10.15517/ijds.2021.46567
Wu, Kevin Y., David T. Wu, Thomas T. Nguyen, and Simon D. Tran. "COVID‐19’s impact on private practice and academic dentistry in North America." Oral Diseases 27 (2021): 684-687. https://doi.org/10.1111/odi.13444 DOI: https://doi.org/10.1111/odi.13444
Quinn, Barry, James Field, Ronald Gorter, Ilze Akota, Maria‐Cristina Manzanares, Corrado Paganelli, Julia Davies et al. "COVID‐19: The immediate response of european academic dental institutions and future implications for dental education." European Journal of Dental Education 24, no. 4 (2020): 811-814. https://doi.org/10.1111/eje.12542 DOI: https://doi.org/10.1111/eje.12542
Felszeghy, Szabolcs, Sanna Pasonen-Seppänen, Ali Koskela, Petteri Nieminen, Kai Härkönen, Kaisa M. A. Paldanius, Sami Gabbouj, Kirsi Ketola, Mikko Hiltunen, Mikael Lundin, Tommi Haapaniemi, Erkko Sointu, Eric B. Bauman, Gregory E. Gilbert, David Morton and Anitta Mahonen. “Using online game-based platforms to improve student performance and engagement in histology teaching.” BMC Medical Education. 19. (2019). 273. https://doi.org/10.1186/s12909-019-1701-0 DOI: https://doi.org/10.1186/s12909-019-1701-0