Jet Impingement Cooling of a Microchannel Heat Sink with Microgroove

Authors

  • N.Y. Cheung Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Malaysia, 43500, Malaysia
  • Kok-Cheong Wong Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Malaysia, 43500, Malaysia

DOI:

https://doi.org/10.37934/cfdl.15.12.107116

Keywords:

Jet impingement, microchannel heat sink, groove, cooling performance

Abstract

The present study works on opportunities in improving the design of micro-channel heatsink (MCHS). The present study focuses on investigating numerically the effects of adding grooves at the MCHS which subject to jet impingement cooling. Commercial software ANSYS Fluent is used and realizable k-epsilon model is adopted to conduct a parametric study on the width and depth of rectangular longitudinal grooves at a constant heat flux of 250 W/cm2 applied at the base of MCHS. Two type of channel designs with grooves i.e. center-groove and side-groove were created and investigated numerically. Results show that addition of grooves generally give improvements in cooling performance and reducing the pressure drop. Some designs of side-grooved channels and center-grooved channels improve the temperature uniformity. The size of the groove affects the flow within the grooves and therefore affect the cooling performance.

Downloads

Download data is not yet available.

Author Biography

Kok-Cheong Wong, Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Malaysia, 43500, Malaysia

kok-cheong.wong@nottingham.edu.my

References

Tuckerman, David B., and Roger Fabian W. Pease. "High-performance heat sinking for VLSI." IEEE Electron device letters 2, no. 5 (1981): 126-129. https://doi.org/10.1109/EDL.1981.25367

Copeland, D., Behnia, M. and Nakayama, W., 1997. Manifold microchannel heat sinks: isothermal analysis. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 20(2), pp.96-102. https://doi.org/10.1109/95.588554

Kim, Yong H., Woo Chong Chun, Jin Taek Kim, Bock Choon Pak, and Byoung Joon Baek. "Forced air cooling by using manifold microchannel heat sinks." KSME International Journal 12 (1998): 709-718. https://doi.org/10.1007/BF02945732

Wang, Guilian, Nan Qian, and Guifu Ding. "Heat transfer enhancement in microchannel heat sink with bidirectional rib." International Journal of Heat and Mass Transfer 136 (2019): 597-609. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.018

Bayrak, Ergin, Ali Bahadır Olcay, and Mustafa Fazıl Serincan. "Numerical investigation of the effects of geometric structure of microchannel heat sink on flow characteristics and heat transfer performance." International journal of thermal sciences 135 (2019): 589-600. https://doi.org/10.1016/j.ijthermalsci.2018.08.030

Martin, Holger. "Heat and mass transfer between impinging gas jets and solid surfaces." In Advances in heat transfer, vol. 13, pp. 1-60. Elsevier, 1977. https://doi.org/10.1016/S0065-2717(08)70221-1

Liu, Yao-Hsien, Siao-Jhe Song, and Yuan-Hsiang Lo. "Jet impingement heat transfer on target surfaces with longitudinal and transverse grooves." International Journal of Heat and Mass Transfer 58, no. 1-2 (2013): 292-299. https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.042

Jang, Seok Pil, Sung Jin Kim, and Kyung Wook Paik. "Experimental investigation of thermal characteristics for a microchannel heat sink subject to an impinging jet, using a micro-thermal sensor array." Sensors and Actuators A: Physical 105, no. 2 (2003): 211-224. https://doi.org/10.1016/S0924-4247(03)00103-1

Sung, Myung Ki, and Issam Mudawar. "Experimental and numerical investigation of single-phase heat transfer using a hybrid jet-impingement/micro-channel cooling scheme." International journal of heat and mass transfer 49, no. 3-4 (2006): 682-694. https://doi.org/10.1016/j.ijheatmasstransfer.2005.08.021

Baydar, E. R. T. A. N., and Y. Ü. C. E. L. Ozmen. "An experimental and numerical investigation on a confined impinging air jet at high Reynolds numbers." Applied thermal engineering 25, no. 2-3 (2005): 409-421. https://doi.org/10.1016/j.applthermaleng.2004.05.016

Sung, Myung Ki, and Issam Mudawar. "Single-phase and two-phase cooling using hybrid micro-channel/slot-jet module." International Journal of Heat and Mass Transfer 51, no. 15-16 (2008): 3825-3839. https://doi.org/10.1016/j.ijheatmasstransfer.2007.12.015

Sung, Myung Ki, and Issam Mudawar. "Single-phase hybrid micro-channel/micro-jet impingement cooling." International Journal of Heat and Mass Transfer 51, no. 17-18 (2008): 4342-4352. https://doi.org/10.1016/j.ijheatmasstransfer.2008.02.023

Kim, Chol-Bom, Chuan Leng, Xiao-Dong Wang, Tian-Hu Wang, and Wei-Mon Yan. "Effects of slot-jet length on the cooling performance of hybrid microchannel/slot-jet module." International Journal of Heat and Mass Transfer 89 (2015): 838-845. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.108

Zhang, Yanjun, Shuangfeng Wang, and Puxian Ding. "Effects of channel shape on the cooling performance of hybrid micro-channel and slot-jet module." International journal of heat and mass transfer 113 (2017): 295-309. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.092

Zhang, Yanjun, Shuangfeng Wang, Kai Chen, and Puxian Ding. "Effect of slot-jet position on the cooling performance of the hybrid trapezoid channel and impingement module." International Journal of Heat and Mass Transfer 118 (2018): 1205-1217. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.054

Darwish, Amr Mostafa, Abdel-Fattah Mohamed El-Kersh, Ibrahim Mahmoud El-Moghazy, and Mohamed Naguib Elsheikh. "Experimental and numerical study of multiple free jet impingement arrays with Al2O3-water nanofluid." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 65, no. 2 (2020): 230-252.

Barrau, Jérôme, Daniel Chemisana, Joan Rosell, Lounes Tadrist, and Manuel Ibáñez. "An experimental study of a new hybrid jet impingement/micro-channel cooling scheme." Applied Thermal Engineering 30, no. 14-15 (2010): 2058-2066. https://doi.org/10.1016/j.applthermaleng.2010.05.013

Barrau, Jérôme, Mohammed Omri, Daniel Chemisana, Joan Rosell, Manel Ibañez, and Lounes Tadrist. "Numerical study of a hybrid jet impingement/micro-channel cooling scheme." Applied Thermal Engineering 33 (2012): 237-245. https://doi.org/10.1016/j.applthermaleng.2011.10.001

Robinson, A. J., R. Kempers, J. Colenbrander, N. Bushnell, and R. Chen. "A single phase hybrid micro heat sink using impinging micro-jet arrays and microchannels." Applied Thermal Engineering 136 (2018): 408-418. https://doi.org/10.1016/j.applthermaleng.2018.02.058

Kempers, R., J. Colenbrander, W. Tan, R. Chen, and A. J. Robinson. "Experimental characterization of a hybrid impinging microjet-microchannel heat sink fabricated using high-volume metal additive manufacturing." International Journal of Thermofluids 5 (2020): 100029. https://doi.org/10.1016/j.ijft.2020.100029

Suhas V.. Patankar. Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, 1980.

Downloads

Published

2023-10-30

How to Cite

N.Y. Cheung, & Kok-Cheong Wong. (2023). Jet Impingement Cooling of a Microchannel Heat Sink with Microgroove. CFD Letters, 15(12), 107–116. https://doi.org/10.37934/cfdl.15.12.107116

Issue

Section

Articles